Файл: Кобзарь Логика учебник.doc

ВУЗ: Не указан

Категория: Книга

Дисциплина: Логика

Добавлен: 29.10.2018

Просмотров: 5503

Скачиваний: 25

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Все остальные фигуры и их модусы находятся в зависимости от первой фигуры и ее модусов; первая фигура подчиняет себе все остальные, модусам первой фигуры подчиняются модусы других фигур.

При внешнем сопоставлении фигур легко обнаружить, что по конфигурации первая и четвертая фигуры противоположны друг другу, потому что в первой фигуре средний термин занимает место субъекта в большей и место предиката в меньшей посылке, а в четвертой фигуре все наоборот — средний термин занимает место предиката в большей и место субъекта в меньшей посылке. Почти то же можно сказать о второй и третьей фигуре, потому что во второй — средний термин занимает место предиката в обеих посылках, а в третьей, наоборот, — место субъекта в обеих посылках. Но это чисто внешнее отличие, есть еще различия и по составу посылок.

Об ограниченности практического использования четвертой фигуры и ее отличии от первой уже было сказано, поэтому главенство первой фигуры над четвертой не вызывает сомнений. Не вызывает в целом сомнений и ограниченность, односторонность второй и третьей фигур по качественно-количественной характеристике их выводов. Вторая дает только отрицательное заключение, а третья — только частное заключение.

Между модусами фигур категорического силлогизма легко просматриваются некоторые сходные черты. Так, модус АА—А первой фигуры и модус АА—I третьей и четвертой фигур имеют в качестве посылок одинаковые по качеству и количеству суждения. Модус АII первой фигуры и такие же модусы третьей и четвертой фигур сходны не только посылками, но и заключением. Модус ЕА—Е сходен с таким же модусом второй фигуры, а по посылкам и с модусами ЕА—О третьей и четвертой фигур. Модус ЕI—О первой фигуры сходен с такими же модусами второй, третьей и четвертой фигур. Сходство и различие модусов фигур легко просмотреть, когда эти модусы выписаны в виде таблиц:

I фигура II фигура III фигура IV фигура

АА--А АЕ--Е АА--I АА--I

AI --I AO--O AI--I AE--E

EA--E EA--E EA--О EA--O

EI--O EI--O EI--O EI--O

IA--I IA--I

OA--O

Хотя полного тождества между фигурами и нет, отдельные модусы их бывают не только сходны, но и одинаковы. Так, модус АI--I первой фигуры полностью совпадает с таким же по составу модусом третьей фигуры, а модус EI--O первой фигуры с подобными же модусами второй, третьей и четвертой фигур. Модусы АЕ--Е имеются во второй и в четвертой фигуре, а модус АА--I, AI--I и ЕА--О в третьей и четвертой фигурах. Однако, основное отношение между фигурами и модусами их - отношение подчинения. Первой фигуре подчиняются все остальные, модусам первой фигуры - почти все модусы остальных.


Зависимости модусов второй и третьей фигур и механизм их подчинения (сведения) модусам первой фигуры анализировал еще Аристотель. Он обычно использовал при сведении модусов операцию обращения и это внешне вполне очевидно, потому что вторая фигура легко сводима к первой прямым обращением большей посылки, а третья - обращением меньшей посылки. Но прямое обращение возможно только с общеотрицательным суждением, поэтому, когда большей посылкой второй фигуры является общеутвердительное суждение, которое может обращаться лишь с ограничением, то таким способом модусы АЕ-О и АО-О второй фигуры к первой не свести. Из шести модусов третьей фигуры таким способом можно свести к модусу ЕI-O первой фигуры только два модуса: ЕА-О и ЕI-О.

Все подобные способы сведения модусов второй и третьей фигуры к модусам первой зашифрованы в названиях самих модусов этих фигур. Каждый модус имеет свое особое латинское название. Названия искусственны, произношение их произвольно. Но если названия модусов первой фигуры как бы исходны, самостоятельны, то названия модусов остальных фигур поставлены в зависимость от первых. Эти названия долго время выполняли роль мнемонических слов, легко запоминающихся (в средневековье было даже придумано четверостишье для названия модусов фигур) и тем помогающих определить как принадлежность модусов к той или иной фигуре, так и способы сведения их к первой фигуре. Входящие в название модусов гласные буквы соответствовали символическому обозначению входящих в умозаключение посылок и вывода, поэтому в названии каждого модуса всегда всего три гласных: первые две из них соответствуют посылкам, последняя - заключению. Согласные в названии модусов II-IV фигур имеют особое, специальное значение, они указывают способ сведения их к модусам первой фигуры, поскольку та является определяющей фигурой, главной, подчиняющей.

Названия модусов первой фигуры следующие: Barbara, - модус, в котором посылки и вывод общеутвердительные суждения, согласные тут произвольны, лишь для благозвучия. В качестве заглавной названия модуса взята вторая буква латинского алфавита, поскольку первая уже задействована для общеутвердительного суждения. Понятно, что название следующего модуса начнется с буквы С - третьей и свободной еще буквы латинского алфавита. И в самом деле, модус ЕА-Е называется Celarent, модус AI-I -- Darii, а модус EI-O -- Ferio.

Названия модусов остальных фигур поставлены в зависимость от названия этих четырех. Так, названия модусов II-IV фигур, начинающиеся буквой "С", как бы говорят этим, что они сводимы к модусу Celarent первой фигуры. Модусы, начинающиеся буквой "D", сводимы соответственно к модусу Darii, а начинающиеся буквой "F" - к модусу Ferio. И только к модусу Barbara сводим один модус из трех, начинающихся буквой "В", а именно - Bramantip четвертой фигуры, два остальных модуса - модус Baroco (AO-O) второй фигуры и модус Boсardo (OA-O) третьей фигуры не сводимы, и не сводимы потому, что общеутвердительная большая посылка модуса Baroco при обращении дает нам частноутвердительное суждение, которое по правилу второй фигуры не может быть большей посылкой. И в случае с Bocardo так же общеутвердительная меньшая посылка третьей фигуры при обращении дает нам частное суждение, а так как в этом модусе большая посылка тоже частное суждение, то, как известно из правил посылок, вывод из двух частных посылок с необходимостью не следует. Эти модусы обосновываются приемом от противного, а показателем несводимости этих модусов выступает присутствующая в названии модусов согласная "с".


Для ориентации в модусах всех фигур, выпишем их названия по каждой фигуре в отдельности:


I фигура II фигура III фигура IV фигура

Barbara (AA-A) Camestres (AE-E) Darapti (AA-I) Bramantip (AA-I)

Celarent (EA-E) Cesare (EA-E) Felapton (EA-O) Camenes (AE-E)

Darii (AI-I) Baroco (AO-O) Datisi (AI-I) Fesapo (EA-O)

Ferio (EI-O) Festino (EI-O) Ferison (EI-O) Fresison (EI-O)

Disamis (IA-I) Dimaris (IA-I)

Bocardo (OA-O)


Приводимая здесь латынь, конечно же, никому из современных учащихся не навязывается. Латынь давно вышла из нашего философско-логического образования, хотя отголоски ее иногда и проявляются. Приходится только жалеть, что этим нарушилась связь традиций. Латынь сейчас при изучении логики не требуется, но чтение старых, особенно дореволюционных учебников логики, показывает, как широко пользовались ею. Иногда логическая латынь встречается и в старой художественной литературе, но она оказывается совершенно непонятной современному читателю. Однако, главное сейчас не в этом. Накопленное знание о простом категорическом силлогизме, можно сказать, требует своего применения.


§ 4. ОПЕРАЦИИ С ВИДАМИ ПРОСТОГО КАТЕГОРИЧЕСКОГО СИЛЛОГИЗМА


К операциям с данной формой мысли следует отнести то, что частично уже было затронуто, а именно - сведение модусов II-IV фигур к модусам первой фигуры, поскольку она занимает особое привилегированное положение в сравнении с остальными. Ее место определяет и старшинство модусов первой фигуры, подчиняющее их положение по отношению к другим модусам. Как же совершается сведение модусов в каждом отдельном случае?

Конкретный прием сведения модусов закодирован в их названии. Если в названии модусов II-IV фигур встречается согласная "m", то эти модусы сводимы путем простой перестановки посылок местами. Это достаточно очевидно для четвертой фигуры, но менее - для третьей и второй. В них перестановка посылок сопровождается еще и другими действиями, о которых напоминают другие согласные в названии модусов. Наличие в названии модусов согласной "p" говорит о том, что суждение перед этой согласной необходимо обратить, а при наличии в названии модусов согласной "s" - что суждения перед данной согласной обращаются прямо, без ограничения. Так как обращение без ограничения возможно либо с общеотрицательным суждением, в котором и субъект и предикат всегда распределены, либо с частноутвердительным суждением, в котором и субъект и предикат не распределены, то можно быть уверенным, что перед согласной "s" всегда будет или общеотрицательное (Е), или частноутвердительное (I) суждение.

Суммируем сказанное: модусы II-IV фигур, названия которых начинаются соответствующими согласными, сводимы к модусам первой фигуры с такими же заглавными буквами, кроме двух - модуса Baroco и Bocardo, о чем свидетельствует согласная "с" в их названии; наличие в названии модусов согласной "m" говорит о необходимости при сведении поменять посылки местами; наличие согласной "р" - что суждения перед нею обращаются; а наличие согласной "s" - что они обращаются без ограничения. Остальные согласные - для благозвучия.


Возьмем, например, модус четвертой фигуры Bramantip, название которого говорит, что он сводим к модусу Barbara. Раз в названии модуса встречаются две согласные, имеющие определенное процессуальное значение, - m и р, то выполняя последовательно соответствующие действия, именно - вначале меняем посылки местами, а потом обращаем выводное суждение, - в итоге и получаем модус Barbara первой фигуры:

Все мои друзья - студенты (А) P --- M Это IV фигура.

Все студенты - учащиеся (А) M --- S

Некоторые учащиеся - мои друзья (I) S --- P


Меняем посылки местами и одновременно обращаем вывод:

Все студенты - учащиеся (А)

Все мои друзья - студенты (А)

Все мои друзья - учащиеся (А)

В итоге получаем модус Barbara первой фигуры. Понятно, что по четвертой фигуре вывод не мог быть общим суждением, так как субъект вывода является предикатом утвердительной меньшей посылки, а предикат утвердительных посылок, как правило, нераспределен; зато по первой фигуре вывод, естественно, общий, поскольку субъект вывода является субъектом общеутвердительной меньшей посылки.

Модусы Сеsаrе, Саmеstres, Саmеnеs сводимы к модусу первой фигуры Сеlаrеnt. Например:

Все коровы не есть птицы (Е) P --- M

Все воробьи - птицы (А) S --- M

Все воробьи не есть коровы (Е) S --- P

Это модус Cesare второй фигуры. Согласная s в его названии показывает, что сведение к модусу Celarent первой фигуры возможно всего лишь одним действием - прямым обращением большей общеотрицательной посылки, т.е. суждения перед согласной s:

Все птицы не есть коровы (Е) М --- Р

Все воробьи - птицы (А) S --- M

Все воробьи не есть коровы (Е) S --- P


Возьмем другой модус:

Все тигры - позвоночные (A) P --- M

Все насекомые не есть позвоночные (E) S --- M

Все насекомые не есть тигры (E) S --- P

Это модус Camestres II фигуры, в названии которого присутствуют две значащие для нашей операции согласные - m и s, при этом s в названии модуса встречается дважды. Данный модус простым обращением большей посылки (так как она общеутвердительное суждение и обращается только в частноутвердительное суждение, не могущее быть большей посылкой первой фигуры) превратить в модус I фигуры невозможно. Поэтому, вначале обратим общеотрицательную меньшую посылку (она обращается прямо), потом поменяем, согласно m, посылки местами и, наконец, обратим тоже прямо общеотрицательный вывод. В итоге получаем модус Celarent первой фигуры:

Все позвоночные не есть насекомые (E) M --- P

Все тигры - позвоночные (A) S --- M

Все тигры не есть насекомые (E) S --- P

Модус Camenes четвертой фигуры сводим к модусу Celarent простой перестановкой посылок местами и прямым обращением общеотрицательного вывода. Например, исходный модус IV фигуры:


Все птицы имеют клюв (А) P --- M

Все имеющие клюв не являются насекомыми (Е) M --- S

Все насекомые не являются птицами (Е) S --- P

Выполняем зашифрованные в названии модуса действия:

Все имеющие клюв не являются насекомыми (Е) М --- Р

Все птицы имеют клюв (А) S --- М

Все птицы не являются насекомыми (Е) S --- Р

Модусы Dаrарti, Disamis, Datisi, Dimaris сводимы к модусу Dаrii. Например, модус Darapti третьей фигуры:

Все киты - млекопитающиеся (A) M --- P

Все киты живут в воде (А) M --- S

Некоторые живущие в воде - млекопитающиеся (I) S --- P

Этот модус сводим всего лишь обращением меньшей посылки, являющейся общеутвердительным суждением, обращаемым с ограничением в частноутвердительное. В итоге получаем модус Darii первой фигуры:

Все киты - млекопитающиеся (A) M --- P

Некоторые, живущие в воде, - киты (I) S --- M

Некоторые, живущие в воде, - млекопитающиеся (I) S --- P

Модусы Festino, Felapton, Ferison, Fesapo, Fresison сводимы к мо­дусу Ferio. Например, Felapton третьей фигуры:

Ни один тигр не есть травоядное (Е) М --- Р

Все тигры - хищники (А) М --- S

Некоторые хищники не есть травоядные (О) S --- P

Данный модус сводится обращением меньшей посылки, а так как она общеутвердительное суждение, то обращается в частноутвердительное, и в итоге получается модус Ferio первой фигуры:

Ни один тигр не есть травоядное (E) M --- P

Некоторые хищники - тигры (I) S --- M

Некоторые хищники не есть травоядные (О) S --- P


§ 5. СОКРАЩЕННЫЕ, СЛОЖНЫЕ И СЛОЖНОСОКРАЩЕННЫЕ КАТЕГОРИЧЕСКИЕ СИЛЛОГИЗМЫ


Своеобразными видами простого категорического силлогизма выступают сокращенные, сложные и сложносокращенные силлогизмы. Структура их в целом ясна из самих их названий. Сокращенные — значит с пропуском одного из элементов пол­ного умозаключения, сложные — значит состоящие из нескольких умозаключений, определенным образом связанных между собой. Сложносокращенные совмещают в себе свойства тех и других умозаключений.

Естественно, что полными силлогизмами как в повседневной, так и научной практике люди не пользуются. Сокращение рассуждения вызвано стремлением к оптимизации мышления, его эффективности и уплотненности, насыщенности. В разговорной речи, как правило, мы сокращаем силлогизмы, например, до "Железо электропроводно, так как все металлы электропроводны", "Юпитер, ты сердишься, значит, ты не прав", или "Наше дело правое - мы победим" и т.п. Поскольку в сокращенных структурах умозаключений не так очевидными становятся те или иные нарушения норм логики, то восстановление сокращенных силлогизмов до полных и раз­ложение сложных до элементарных, простых как раз и выступают своеобразными проверочными операциями для вы­явления правильности, соответствия данных рассуждений нормативным требованиям логики. Чтобы не ошибаться в подобных умозаключениях и необходимо знать полные виды силлогизмов, поскольку обнаружить ошибку в рассуждении можно лишь зная не только структуру умозаключения, но и законы ее.