Добавлен: 29.10.2018
Просмотров: 5498
Скачиваний: 25
Оба модуса — утверждающий и отрицающий — гарантируют необходимость и истинность вывода при истинности посылок. Два остальных модуса этого вида силлогизма не дают необходимо истинного вывода, так как их структурные особенности не соответствуют правилам, законам логики. Модусы эти называются неправильными, неправомочными, проблематичными, правдоподобными. Они дают знание, которое в одном случае (что определяется содержанием посылок) может быть ложным, в другом истинным. Формулы этих модусов записываются так:
В -->С В -->С
не-В С
(возможно, не-С) (возможно, В)
? ?
Чисто разделительный силлогизм составляют разделительные посылки, например:
Четырехугольники суть равносторонние или они неравносторонние
Равносторонние четырехугольники есть квадраты или ромбы
Четырехугольники есть неравносторонние, или квадраты, или ромбы
Символически это можно записать так:
S есть Р или S есть Р1
Р есть Р2 или Р3
S есть Р1 или Р2 или Р3
Умозаключение, в котором на месте большей посылки — суждение разделительное, а на месте меньшей посылки — суждение категорическое, называется разделительно-категорический силлогизм. Как и условно-категорический силлогизм, разделительно-категорический тоже имеет всего два правильных модуса: утверждающе-отрицающий, или роnеndо-tоllеns, и отрицающе-утверждающий, или tоllеndо-роnеns. Например:
Деревья у нас либо лиственные, либо хвойные
Данное наше дерево - хвойное
Данное дерево - не лиственное
Другой пример:
Деревья у нас либо лиственные, либо хвойные
Данное наше дерево - не хвойное
Данное дерево - лиственное
В этих разделительно-категорических силлогизмах меньшая посылка в первом случае утвердительное суждение, а вывод отрицателен, во втором - отрицательная, но вывод положителен. Соответственно, эти модусы и называются - утверждающе-отрицающий (роnеndо-tollеns) и отрицающе-утверждающий (tollendo-ponens).
В разделительно-категорическом силлогизме можно выделить четыре их разновидности, или модуса:
В v С В v С В v С В v С
В не-В С не-С
не-С С не-В В
Однако, легко обнаружить, что здесь фактически лишь два их вида, поскольку каждый из них имеет свою пару. Поэтому, обычно и говорится, что разделительно-категорический силлогизм имеет только два правильных модуса: утверждающе-отрицающий и отрицающе-утверждающий.
В использовании условных и разделительных умозаключении следует соблюдать не только требования к силлогизмам, но и все требования логики к сложным суждениям, входящим в это умозаключение. Условное суждение должно отражать естественные, причинно-следственные зависимости, ибо только в этом случае вывод по условно-категорическому силлогизму будет правильным. В случае же когда основание и следствие условного суждения не соответствуют своему структурному значению (когда их, например, поменяют местами), в силлогизме, где участвует условное суждение, вывод с необходимостью следовать не может: когда человек болен лихорадкой, то у него высокая температура, но когда у него высокая температура, это еще не значит, что он болен лихорадкой.
И в разделительном силлогизме правильность вывода будет гарантирована лишь тогда, когда в разделительной посылке будут перечислены все члены деления (деление должно быть полным), и при этом члены деления должны исключать друг друга, что следует из уже известного правила деления.
Наиболее сложным из рассматриваемых является условно-разделительный силлогизм. Он составляется из условной (будем считать ее большей) и разделительной (будем считать ее меньшей) посылок. Обычно условно-разделительные умозаключения называют лемматическими (от древнегреческого lemma - предположение). Структурно они подразделяются на дилеммы, трилеммы и полилеммы.
Дилемма — условно-разделительный силлогизм с двумя взаимоисключающими выводами, альтернативами. Смысл дилеммы заключается в необходимости выбора одного из двух возможных, как правило, взаимоисключающих друг друга решений. Различают два вида, или модуса, дилеммы: утверждающий и отрицающий. Утверждающий иначе называют конструктивной дилеммой, отрицающий модус — деструктивной дилеммой.
В конструктивной (утверждающей) дилемме условная (большая) посылка устанавливает два возможных основания и два вытекающих из них следствия. В разделительной (меньшей) посылке говорится о возможности только одного из двух оснований. В заключении же утверждается возможность только одного из двух следствий. Например:
Если Иванов - дисциплинированный студент, то он регулярно посещает учебные занятия; если же Иванов - недисциплинированный студент, то он часто пропускает учебные занятия.
Иванов либо дисциплинированный студент, либо недисциплинированный.
Иванов либо регулярно посещает учебные занятия, либо часто пропускает их.
В виде схемы этот модус структурно представляется более наглядно:
Если В то С; если Д, то К
Либо В, либо Д
Либо С, либо К
В логике выделяют и упрощенный вариант конструктивной дилеммы, когда в условной посылке из двух разных оснований вытекает одно и то же следствие:
Если В, то С; если Д, то С
Либо В, либо Д
С
Главная особенность этих рассуждений заключается в переходе мысли от основания к следствию условного суждения, т.е. в соблюдении того закона, который определяет структурные зависимости элементов условного суждения.
В деструктивной (отрицающей) дилемме большая условная посылка устанавливает два возможных следствия из двух оснований. В разделительной меньшей посылке отрицаются оба возможных следствия. В заключении необходимо отрицаются и сами основания:
Если В, то С; если Д, то К
Либо не-С, либо не-К
Не-В либо не-Д
В логике чаще рассматривается упрощенный вариант деструктивной дилеммы. В ней в большей условной посылке два возможных следствия устанавливаются из одного и того же основания:
Если наш товарищ — студент химического факультета, то он либо студент очного отделения, либо студент вечернего отделения.
Наш товарищ или не студент очного отделения, или не студент вечернего отделения.
Наш товарищ не студент химического факультета.
Это рассуждение вполне может соответствует действительности, поскольку специфика этой специализации не допускает возможности заочного обучения.
В деструктивной дилемме срабатывает уже другой закон структуры условного суждения, а именно: ложность следствия условного суждения необходимо влечет за собой и ложность самого основания этого суждения:
Если В, то С или Д
Не-С или не-Д
Не-В
Условно-разделительные силлогизмы еще в древности пользовались большой популярностью и им соответствовали многие исторические и курьезные случаи. Известна дилемма, с которой скифы будто бы обращались к Александру Македонскому:
Если ты бог, то благодетельствуй людям, если ты человек, то не забывай о человечности
Но ты или бог, или человек
Сл.: Ты или благодетельствуй людям, или не забывай о человечности.
А известный из истории философии случай с Эватлом, учеником Протагора, который обязался заплатить учителю за обучение после первого же выигранного им в суде дела. Эватл в судах после учебы не участвовал и Протагор, чтобы получить с ученика плату за обучение, сам обратился в суд, сказав Эватлу:
Если я выиграю дело, то ты заплатишь мне по решению суда; если же я проиграю, то ты заплатишь мне по нашему договору
Но я или выиграю дело, или проиграю его
Следовательно, в любом случае ты должен будешь заплатить мне.
Казалось бы, выхода нет. Но не зря Эватл прошел курс обучения у столь авторитетного софиста. Он нашелся ответить учителю не менее убедительной дилеммой:
Если я выиграю дело, то не заплачу тебе по решению суда; если же проиграю дело, то не заплачу по нашему договору
Но я или выиграю дело, или проиграю
Следовательно, в любом случае я не заплачу.
Трилемма — условно-разделительный силлогизм с тремя взаимоисключающими выводами-решениями. Типичный пример трилеммы — ситуация с витязем на распутье: если прямо поедешь, то голову потеряешь; если направо поедешь — коня потеряешь; если налево поедешь — женату быть. Структурные требования дилеммы так же относимы и к трилемме и поэтому на ней останавливаться нет необходимости.
Когда же в условно-разделительном умозаключении выбор предстоит из более чем трех взаимоисключающих решений (вариантов), то такое умозаключение называется полилеммой. Некоторые же и трилемму называют полилеммой, поэтому у них всего два вида лемматических умозаключений: дилемма и полилемма.
Общая схема видов дедуктивных умозаключений интересна своей наглядностью, она позволяет едином взором охватить их все:
Виды дедуктивных умозаключений
(силлогизмов)
простой категорический
силлогизм
первая вторая третья четвертая
фигура фигура фигура фигура
4 4 6 5
модуса модуса модусов модусов
условный
силлогизм
разделительный
силлогизм
чисто условно-
условный категорический
разделительно- чисто
категорический разделительный
сокращенные,
сложные и
сложно-сокращенные
категорические
силлогизмы
энтимема эпихейрема
полисиллогизм сорит
условно-разделительный
(лемматический)
дилемма трилемма полилемма
конструктивная деструктивная
Глава 5
ИНДУКТИВНЫЕ И ТРАДУКТИВНЫЕ УМОЗАКЛЮЧЕНИЯ
§ 1. ИНДУКЦИЯ, ЕЕ СТРУКТУРНЫЕ ОСОБЕННОСТИ, ВИДЫ
Индуктивное умозаключение — это мыслительная структура (форма мысли), вид умозаключения, в котором общий вывод следует из двух и более частных или единичных посылок. Если дедукция предполагает знание какого-то закона, общего положения (топоса, по Аристотелю) и дедуктивное рассуждение в таком случае — конкретизация этого общего положения, то индукция — наоборот, поиск общего через рассмотрение ряда единичных или частных положении. Это способ практического, опытного овладения, освоения окружающего предметного мира, это переход от знания меньшей степени общности к знанию большей степени общности. Короче - это противоположная дедукции направленность рассуждения, соответственно и структура мысли.
В виде схемы структура индуктивного умозаключения имеет такой вид:
S1 есть Р
S2 есть Р
S3 есть Р
S1, S2, S3 составляют часть предметной области S
Все S есть P
В отличие от дедуктивных категорических умозаключений, где связь крайних терминов устанавливается через их отношение к среднему, т.е. в посылках эта связь не дана непосредственно; в индуктивных умозаключениях связь, устанавливаемая в выводе, дана непосредственно в самих посылках. Другой особенностью индуктивных умозаключений является то, чти они никогда (за единственным исключением) не дают абсолютно достоверного знания. Индуктивные умозаключения по существу своему всегда дают знание проблематичное, вероятное, правдоподобное. Единственным исключением является умозаключение по так называемой полной индукции. Но поскольку полная индукция применима в ограниченных случаях и не соответствует природе индукции - давать более общее, чем исходное, т.е. новое знание, поэтому научная ценность и значимость полной индукции незначительна.
Научная же ценность и значимость индукции заключается как раз в том, что она расширяет наше знание, распространяет знание, полученное из ограниченных предметных областей, на более широкую предметную область, на область неизвестного. В практике научного и обыденного познания, в практике научного исследования мы постоянно пользуемся индукцией для достижения ценных и в общем-то правильных научных положений. Вывод, например, закона всемирного тяготения на основании только части исследованных свойств предметов наблюдаемого мира не теряет своей научной ценности и значимости относительно всего (и не наблюдаемого в том числе) мира.
В индукции, как и в дедуктивных умозаключениях, выделяют посылки и заключение (вывод), но посылки не подразделяются на меньшую и большую (все посылки индуктивных рассуждений равнозначны), а могут быть подразделены на первую, вторую и т. д. Количество посылок не ограничивается, хотя ясно, что их число не должно превышать число самих предметов, элементов, составных частей какого-то объема (какой-то предметной области), относительно которого идет рассуждение.
Различают два основных вида индукции: полную и неполную. Полная индукция — это умозаключение, в котором общий вывод получен на основании единичных посылок о каждом предмете (каждом элементе) какого-то множества (класса, области, объема и пр.). Поскольку речь идет о каждом элементе множества, то понятно, что полной индукцией можно пользоваться только относительно поддающихся исчислению предметных областей (множеств, классов, объемов и пр.). Например:
В понедельник было пасмурно
Во вторник было пасмурно
В среду было пасмурно
В четверг было пасмурно
В пятницу было пасмурно
В субботу было пасмурно
В воскресенье было пасмурно
Всю неделю было пасмурно.
Несмотря на абсолютную достоверность, вывод по полной индукции в научном отношении мало популярен, наименее ценен и прежде всего потому, что этот вид имеет ограниченное употребление (ведь надо обязательно перечислить все предметы), он не дает ничего нового, не распространяет знание на более широкую предметную область, на неизвестное, т.е. не соответствует существу индукции, ее природе; общий вывод в этом случае — лишь более короткая формулировка знания, данного в посылках, их сумма. На этом основании некоторыми специалистами в логике данный вид и не включается в индукцию.
Неполная индукция - это и есть собственно индукция; по природе своей, по существу это умозаключение, в котором общий вывод делается на основании посылок, лишь частично охватывающих ту или иную, исследуемую или рассматриваемую, предметную область. Неполная индукция подразделяется на три вида: индукция через простое перечисление при отсутствии противоречащего случая; индукция через отбор фактов, исключающих случайность обобщения, и научная индукция.
Индукция через простое перечисление при отсутствии противоречащего случая, по другому называемая еще популярной индукцией, есть общий вывод на основании лишь того, что из всех первых, даже случайно попавшихся случаев (фактов), не встретилось ни одного, противоречащего обобщению. Примером этого вида индукции является случай с незадачливым путешественником, который, едва высадившись на берег Франции, встретил нескольких, случайно оказавшихся рыжими, французов и записал в своем дневнике: "Все французы — рыжие". Или другой пример: аспирант пришел помочь своему научному руководителю принять экзамен у студентов, и, явно желая польстить ему, после первых же успешных ответов экзаменующихся, сказал профессору: "Ваши студенты очень хорошо подготовились к экзамену".