Файл: chapter_2_the_basic_fea_procedure.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 09.06.2020

Просмотров: 294

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
background image

Chapter 2 – The Basic FEA Procedure 

 
Now, equations 2.2, 2.4, 2.5 also contain the u

term and therefore these equations must 

also be modified. We can modify equation 1 by transferring the term k

12

u

2

 to the right 

hand side and replacing u

2

 by U

2

. The modified equation can be written as 

 
 

K

11

u

1

 + 0 + k

13

u

3

 + k

14

u

4

 = F

– k

12

U

 
Similarly, equations 3 and 4 can be written as 
 
 

K

31

u

1

 + 0 + k

33

u

+ k

34

u

4

 = F

3

 – k

32

U

2

 

 

K

41

u

1

 + 0 + k

43

u

+ k

44

u

4

 = F

4

 – k

42

U

2

 

 
The final matrix equation is 
 
 

      

 

 

 k

11

   0  

  

  k

13 

  k

14 

       u

1

         F

1

 – k

1

U

2

 

 

   

     

 

  

 0      k

22   

  0      0

     

u

2     

=   k

22

U

 

 

 

 

k

31

   0

  

  k

33

   k

34     

u

3           

 F

3

 – k

32

U

 

 

 

 

k

41

   0

  

  k

43

   k

44 

u

4

        F

4

 – k

42

U

 

 
 
The dotted line indicates changes made in the enclosed terms. The final matrix remains 
symmetric and has the same size. The boundary conditions for forces can now be 
incorporated and a numerical solution scheme can be used to solve this equation. This 
procedure is summarized in the following simple, step-by-step approach. 
 
Given the known boundary conditions at node 2: u

i

 = u

2

 = U

2

, follow these steps to 

incorporate the known nodal values. Note that, here, i = 2 and j = 1,2,3,4. 

 

 

Step 1: Set all terms in row 2 to zero, except the term in column 2 (kij = 0, k

ii 

= k

22

 0) 

 
Step 2: Replace F

2

 with the term k

22

U

2

 (F

i

 = k

ii

u

i

 
Step 3: Subtract the value k

i2

 U2 from all the forces, except F

2

 ( subtract k

ji

 from the 

existing values of f

), where i = 1, 3, and 4 

 
Step 4: Set all the elements in column 2 to zero, except, row2 (all k

ji

 = 0, k

ii

 # 0) 

 
The above procedure now will be applied in the following example problem. 
 
 
 
 
 
 

ME 273 Lecture Notes ©  by R. B. Agarwal 

Finite Element Analysis

 

2

-16

 

 

 

 


background image

Chapter 2 – The Basic FEA Procedure 

 

Example 2.5 

 
In example problem 2.4 replace the force F by a nodal deflection of 1.5 mm on node 2 
and rework the problem. 
 

Solution 

 
Rewriting the final structural matrix equation in example 2.4, we have 
 
 

                             

   F

1

 

      25   -15     0    -10          u

1

 

 

 

       

   F

2

   =     -15    90   -45   -30          u

2

 

 

 

   F

3

 

        0   -45    80   -35          u

3

 

 

 

   F

4

 

     -10   -30  -35     75          u

4

 

 
 
 
Boundary condition are: u

1

 = u

4

 = 0, and u

2

 = U

2

 = 1.5mm. Applying the 4 steps 

described above in sequence, 
 

Step 1: Set all terms in row 2 to zero, except the term in column 2 (kij = 0, k

ii

 = k

22 

 0) 

 

                          

    F

1

        25   -15     0    -10          

u

1

 

 

 

       

    F

2

    =     0     90     0      0             

u

2

 

 

 

    F

3

          0   -45    80   -35          

u

3

 

 

 

    F

4

       -10   -30   -35    75          

u

4

 

 
 

Step 2: Replace F

2

 with the term k

22 

U

2

 = (90)(1.5) = 135, (F

i

 = k

ii

u

i

 

 

                             

      F

1

          25   -15     0    -10        

u

1

 

 

 

       

    135   =     0      90     0      0         

u

2

 

 

 

      F

3

          0     -45    80   -35        

u

3

 

 

 

      F

4

         -10   -30   -35    75        

u

4

 

 
 

Step 3: Subtract the value k

22 

U

2

 from all the forces, except F

2

 (subtract k

ji

 from the 

existing values of f

j

 

F

1

Æ

 F

1

 – (15)(1.5) = 22.5        Row 1: k

j2 = 

k

12 = 

 -15 

F

3

Æ

 F

3

 – (-45)(1.5) = 67.5 

 Row 2: k

j2 =

 k

32 = 

 -45 

 

F

4

Æ

 F

4

 – (-30)(1.5) = 45 

 Row 2: k

j2 =

 k

42 = 

 - 30 

ME 273 Lecture Notes ©  by R. B. Agarwal 

Finite Element Analysis

 

2

-17

 

 

 

 


background image

Chapter 2 – The Basic FEA Procedure 

Note: F

1

 = F

3

 = F

4

 = 0. 

 
The new force equation now is, 
 

      22.5 

 

 

 

       

      135           

 

 

      67.5 

  

 

 

       45             

 
 

Step 4: Set all the elements in column 2 to zero, except, row2 (all k

ji

 = 0, k

ii

 

 0) 

 
Or, k

12

 = k

32

 = k

42

 = 0, and the new equation is, 

 

      22.5 

25    0      0   -10        u

1

 

 

 

       

      135     =      0    90     0     0         u

2

 

 

 

      67.5 

 0     0     80  -35        u

3

 

 

 

       45            -10    0   -35   75         u

4

 

 
 
This is the final equation after the nodal value u

2

 = 1.5 mm is incorporated into the 

structural equation. 
 
The same procedure can be followed for the boundary conditions u

1

 = u

4

 = 0. It can be 

stated that for zero nodal values, the procedure will always lead to elimination of rows 
and columns corresponding to these nodes, that is, the first and fourth rows as well as 
columns will drop out. The reader is encouraged to verify this statement. 
 
Thus, the final equation is, 
 

 

 

       

 

       90    0          u

2

     =        135  

 

 

               0     80         u

3

               67.5 

 

         

Solving for u

2

 and u

3

, we get 

 
 

           u

2  

  =    1.5    

 

 

            u

3

          0.8437 

 
Spring deflection is: 
 
 

Spring 1: 

       u

2

 – u

1

 = 1.500 

Spring 2:                u

3

 – u

1

 = 0.8437 

Spring 3:                u

3

 – u

2

 = -0.6563 

Spring 4:                u

3

 – u

2

 = -0.6563 

Spring 5:  

       u

4

 – u

2

 = -1.500 

Spring 6:  

       u

4

 – u

3

 = -1.6875 

ME 273 Lecture Notes ©  by R. B. Agarwal 

Finite Element Analysis

 

2

-18

 

 

 

 


background image

Chapter 2 – The Basic FEA Procedure 

2.3.6 Structures That can be Modeled Using a Spring Elements 

 
As mentioned earlier, almost all engineering materials are similar to a linear spring, 
satisfying the relation F = ku. Therefore, any structure that deflects only along its axial 
direction (with one degree of freedom) can be modeled as a spring element. The 
following example illustrates this concept. 
 
 

Example 2.6 

 
A circular concrete beam structure is loaded as shown. Find the deflection of points at 8”, 
16”, and the end of the beam. E =  4 x 106 psi 
 
 

 

 

 
 
 
 

       12 in 

 

 

 

   3 in       50000 lb 

 

 

 

 

 

 

 

 

 

 

 x 

 
 
 

 

 

 

    24 in 

 
 

 

 

 

Figure 2.7 

 
Solution 

 
The beam structure looks very different from a spring. However, its behavior is very 
similar. Deflection occurs along the x-axis only. The only significant difference between 
the beam and a spring is that the beam has a variable cross-sectional area. An exact 
solution can be found if the beam is divided into an infinite number of elements, then, 
each element can be considered as a constant cross-section spring element, obeying the 
relation F = ku, where k is the stiffness constant of a beam element and is given by    k = 
AE/L. 
 
In order to keep size of the matrices small (for hand- calculations), let us divide the beam 
into only three elements. For engineering accuracy, the answer obtained will be in an 
acceptable range. If needed, accuracy can be improved by increasing the number of 
elements. 
 
As mentioned earlier in this chapter, spring, truss, and beam elements are line-elements 
and the shape of the cross section of an element is irrelevant. Only the cross-sectional 
area is needed (also, moment of inertia for a beam element undergoing a bending load 
need to be defined). The beam elements and their computer models are shown in figure 
2.8. 
 

ME 273 Lecture Notes ©  by R. B. Agarwal 

Finite Element Analysis

 

2

-19

 

 

 

 


background image

Chapter 2 – The Basic FEA Procedure 

Here, the question of which cross-sectional area to be used for each beam section arises. 
A good approximation would be to take the diameter of the mid-section and use that to 
approximate the area of the element. 
 
     k

1

        k

2

       k

3

 

 
 

 

 

 

 

k

1

 

 

       k

2

   

 

k

     1           2         3 
 

 

 

 

   1        

  2     2  

       3       3                    4 

 
 

3      4 

 

  Beam sections 

 

 

 

Equivalent spring elements 

 

Figure 2.8 

 

Cross-sectional area

 

The average diameters are: d

1

 = 10.5 in., d

2

 = 7.5 in., d

3

 = 4.5. (diameters are taken at the 

mid sections and the values are found from the height and length ratio of the triangles 
shown in figure 2.10), which is given as 
 
12/L = 3/(L-24), 

L = 32 

 
Average areas are: 
 
A

1

 = 86.59 in2  

A

2

 = 56.25 in2  

A

3

 = 15.9 in2 

 
 
 

 

 

 

 

 

 

24 in 

 
 
 
 

 

 

 

 

    12 in      d

1

      d

2

       d

3

 

 
 
 

 

 

 

 

 

 

 

                      3 in 

 

 

 

 

 

 

 

 

 

Original             Averaged 

 

 

       8         8       8 

L- 24      

 

 

                                                                     L 

Figure 

2.9 

    Figure 

2.10 

 

Stiffness 

 
k

1

 = A

1

 E/L

1

 = (86.59)(4 

×

 10

6

/8) = 4.3295 

×

10

7

 lb./in., similarly, 

ME 273 Lecture Notes ©  by R. B. Agarwal 

Finite Element Analysis

 

2

-20