Файл: Интеллектуальные информационные системы когнитивной графики.pdf

ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 25.06.2023

Просмотров: 106

Скачиваний: 4

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

ВВЕДЕНИЕ

С развитием нашего общества лавинообразно растет поток информации нуждающейся в обработке. И соответственно растет сложность ее анализа. Объем этих задач превышает возможности человеческого разума. Даже определенная машинная обработка не всегда позволяет извлечь новые или желаемые знания из потока информации. Поэтому возникает необходимость в качественно ином уровне ее обработки, предусматривающем использование методов и средств когнитивной компьютерной графики или моделирования.

Основной задачей когнитивных методов является автоматизация части функций познавательных процессов. Поэтому эти технологии можно применять во всех областях, в которых востребовано самопознание.

Общая цель компьютерных когнитивных наук - создание качественно нового знания, путем преодоления барьеров восприятия, познания и понимания, связанных с представлением информации в привычной буквенно-цифровой форме. Например, рождение принципиально новых научных идей часто не может быть сведено к процессу дедукции, формально - логическому выводу гипотез и теорий.

Если главной дисциплиной здесь считать «распознавание образов» то две другие (обработка сигналов, машинная графика) являются обслуживающими. Однако это обслуживание, направленное на подготовку данных, по объему вычислений существенно превосходит основное направление.

Многие алгоритмы машинной графики и обработки сигналов, необходимые для решения задач распознавания образов, были разработаны в 1981-1984 годах в Институте проблем управления РАН в лаб. №18. Сюда можно отнести алгоритмы отсечения, определения ориентации плоских и пространственных графических образов, спектрального анализа типовых кривых на основе ДПФ и другие.  В это время было актуальным погружение алгоритмов машинной графики в специализированные вычислительные структуры. Весь наработанный арсенал алгоритмов оказался полезным впоследствии при решении задач интеллектуализации наземной станции командно-измерительной системы (НСКИС) с целью повышения ее автономности и функциональности. Причем основной упор делался на использование возможностей искусственных нейронных сетей (ИНС) в качестве эффективных распознавателей.

Актуальность темы основывается на построении когнитивных (способствующих пониманию) графических образов, как для космических, так и медицинских приложений.

Цель курсовой работы рассмотреть графические объекты и взаимосвязь между ними.


Задачи курсовой работы:

  • Рассмотреть построение модели объекта и генерация изображения,
  • Рассмотреть преобразование модели и изображения,
  • Изучить повышение качества изображения.

Объекты для рассмотрения в курсовой работе: дискретное, числовое представление фотографий.

Предмет: исследование абстрактных моделей графических объектов и взаимосвязей между ними. Объекты могут быть как синтезированными, так и выделенными на фотоснимках.

Глава 1. Интеллектуальная информационная система

1.1 Определение интеллектуальной информационной системы

Существует большое множество интеллектуальных информационных систем (ИИС). Однако единого определения интеллектуальной информационной системы нет.

Интеллектуальной информационной системой называют автоматизированную информационную систему, основанную на знаниях, или комплекс программных, лингвистических и логико-математических средств для реализации основной задачи – осуществления поддержки деятельности человека и поиска информации в режиме продвинутого диалога на естественном языке.

Кроме того, информационно-вычислительными системами с интеллектуальной поддержкой для решения сложных задач называют те системы, в которых логическая обработка информации доминирует над вычислительной.

Таким образом, любая информационная система, решающая интеллектуальную задачу или использующая методы искусственного интеллекта, относится к интеллектуальным.

Для интеллектуальных информационных систем свойственны следующие признаки:

  • развитые коммуникативные способности;
  • умение решать сложные плохо формализуемые задачи;
  • способность к самообучению;
  • адаптивность.

Коммуникативные способности ИИС характеризуют способ взаимодействия (интерфейса) конечного пользователя с системой, в частности возможность формулирования произвольного запроса в диалоге с ИИС на языке, максимально приближенном к естественному.

Сложные неудовлетворительно формализуемые задачи – это задачи, которые требуют построения оригинального алгоритма решения в зависимости от конкретной ситуации, для которой могут быть характерны неопределенность и динамичность исходных данных и знаний.


Способность к самообучению – это вероятность автоматического извлечения знаний для решения задач из накопленного опыта конкретных ситуаций.

Адаптивность – способность к развитию системы в соответствии с объективными изменениями модели проблемной области.

Классификация интеллектуальных систем

В соответствии с перечисленными признаками ИИС делятся на (данная классификация – одна из возможных) (рисунок 1):

  • системы с коммутативными способностями (с интеллектуальным интерфейсом);
  • экспертные системы (системы для решения сложных задач);
  • самообучающиеся системы (системы, способные к самообучению);
  • адаптивные системы (адаптивные информационные системы).

Рисунок 1. Классификация систем

Интеллектуальные базы данных имеют ряд особенностей от обычных баз данных возможностью выбора по запросу нужной информации, которая может явно не храниться, а выводиться результатом из имеющейся в базе данных.

Естественно-языковой интерфейс предполагает передачу естественно-языковых конструкций на внутримашинный уровень представления знаний. Для этого необходимо решать задачи морфологического, синтаксического и семантического анализа и синтеза высказываний на естественном языке. Так, морфологический анализ предполагает распознавание и проверку правильности написания слов по словарям, синтаксический контроль – разложение входных сообщений на отдельные компоненты (определение структуры) с проверкой соответствия грамматическим правилам внутреннего представления знаний и выявления недостающих частей и, наконец, семантический анализ – определение смысловой правильности синтаксических конструкций. Синтез высказываний решает обратную задачу преобразования внутреннего представления информации в естественно-языковое.

Естественно-языковой интерфейс используется для:

  • доступа к интеллектуальным базам данных;
  • контекстного поиска документальной текстовой информации;
  • голосового ввода команд в системах управления;
  • машинного перевода с иностранных языков.

Гипертекстовые системы предназначены для реализации поиска по ключевым словам в базах текстовой информации. Интеллектуальные гипертекстовые системы отличаются возможностью более сложной семантической организации ключевых слов, которая отражает различные смысловые отношения терминов. Таким образом, механизм поиска работает прежде всего с базой знаний ключевых слов, а уже затем непосредственно с текстом. В более широком плане сказанное распространяется и на поиск мультимедийной информации, включающей, помимо текстовой, и цифровую информацию.


Системы контекстной помощи можно рассматривать как частный случай интеллектуальных гипертекстовых и естественно-языковых систем. В отличие от обычных систем помощи, навязывающих пользователю схему поиска требуемой информации, в системах контекстной помощи пользователь описывает проблему (ситуацию), а система с помощью дополнительного диалога ее конкретизирует и сама выполняет поиск относящихся к ситуации рекомендаций. Такие системы относятся к классу систем распространения знаний (Knowledge Publishing) и создаются как приложение к системам документации (например, технической документации по эксплуатации товаров).

Системы когнитивной графики позволяют осуществлять интерфейс пользователя с ИИС с помощью графических образов, которые генерируются в соответствии с происходящими событиями. Такие системы используются в мониторинге и управлении оперативными процессами. Графические образы в наглядном и интегрированном виде описывают множество параметров изучаемой ситуации. Например, состояние сложного управляемого объекта отображается в виде человеческого лица, на котором каждая черта отвечает за какой-либо параметр, а общее выражение лица дает интегрированную характеристику ситуации. Системы когнитивной графики широко используются также в обучающих и тренажерных системах на основе использования принципов виртуальной реальности, когда графические образы моделируют ситуации, в которых обучаемому необходимо принимать решения и выполнять определенные действия.

Экспертные системы предназначены для решения задач на основе накапливаемой базы знаний, отражающей опыт работы экспертов в рассматриваемой проблемной области.

Многоагентные системы. Для таких динамических систем характерна интеграция в базе знаний нескольких разнородных источников знаний, обменивающихся между собой получаемыми результатами на динамической основе.

Для многоагентных систем характерны следующие особенности:

  1. проведение альтернативных рассуждений на основе использования различных источников знаний с механизмом устранения противоречий;
  2. распределенное решение проблем, которые разбиваются на параллельно решаемые подпроблемы, соответствующие самостоятельным источникам знаний;
  3. применение множества стратегий работы механизма вывода заключений в зависимости от типа решаемой проблемы;
  4. обработка больших массивов данных, содержащихся в базе данных;
  5. использование различных математических моделей и внешних процедур, хранимых в базе моделей;
  6. способность прерывания решения задач в связи с необходимостью получения дополнительных данных и знаний от пользователей, моделей, параллельно решаемых подпроблем.

В основе самообучающихся систем лежат методы автоматической классификации примеров ситуаций реальной практики.

Характерными признаками самообучающихся систем являются:

  • самообучающиеся системы «с учителем», когда для каждого примера задается в явном виде значение признака его принадлежности некоторому классу ситуаций (классообразующего признака);
  • самообучающиеся системы «без учителя», когда по степени близости значений признаков классификации система сама выделяет классы ситуаций.

Индуктивные системы используют обобщение примеров по принципу от частного к общему. Процесс классификации примеров осуществляется следующим образом:

    1. Выбирается признак классификации из множества заданных (либо последовательно, либо по какому-либо правилу, например в соответствии с максимальным числом получаемых подмножеств примеров).
    2. По значению выбранного признака множество примеров разбивается
    3. на подмножества.
    4. Выполняется проверка, принадлежит ли каждое образовавшееся подмножество примеров одному подклассу.
    5. Если какое-то подмножество примеров принадлежит одному подклассу, то есть у всех примеров подмножества совпадает значение классообразующего признака, то процесс классификации заканчивается (при этом остальные признаки классификации не рассматриваются).
    6. Для подмножеств примеров с несовпадающим значением классообразующего признака процесс классификации продолжается начиная с пункта 1 (каждое подмножество примеров становится классифицируемым множеством).

Нейронные сети представляют собой устройства параллельных вычислений, состоящие из множества взаимодействующих простых процессоров. Каждый процессор такой сети имеет дело только с сигналами, которые он периодически получает, и сигналами, которые он периодически посылает другим процессорам.

В экспертных системах, основанных на прецедентах (аналогиях), база знаний содержит описания не обобщенных ситуаций, а собственно сами ситуации или прецеденты.

Поиск решения проблемы в экспертных системах, основанных на прецедентах, сводится к поиску по аналогии (то есть абдуктивный вывод от частного к частному).

В отличие от интеллектуальной базы данных, информационное хранилище представляет собой хранилище извлеченной значимой информации из оперативной базы данных, которое предназначено для оперативного ситуационного анализа данных (реализации OLAP-технологии).

Типичными задачами оперативного ситуационного анализа являются: