Файл: Интеллектуальные информационные системы когнитивной графики.pdf

ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 25.06.2023

Просмотров: 110

Скачиваний: 4

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
  • определение профиля потребителей конкретных объектов хранения;
  • предсказание изменений объектов хранения во времени;
  • анализ зависимостей признаков ситуаций (корреляционный анализ).

Адаптивная информационная система – это информационная система, которая изменяет свою структуру в соответствии с изменением модели проблемной области.

При этом:

  1. адаптивная информационная система должна в каждый момент времени адекватно поддерживать организацию бизнес-процессов;
  2. адаптивная информационная система должна проводить адаптацию всякий раз, как возникает потребность в реорганизации бизнес-процессов;
  3. реконструкция информационной системы должна проводиться быстро и с минимальными затратами.

Ядром адаптивной информационной системы является постоянно развиваемая модель проблемной области (предприятия), поддерживаемая в специальной базе знаний – репозитории. На основе ядра осуществляется генерация или конфигурация программного обеспечения. Таким образом, проектирование и адаптация ИС сводится, прежде всего, к построению модели проблемной области и ее своевременной корректировке.

Так как нет общепринятого определения, четкую единую классификацию интеллектуальных информационных систем дать затруднительно.

Если рассматривать интеллектуальные информационные системы с точки зрения решаемой задачи, то можно выделить системы управления и справочные системы, системы компьютерной лингвистики, системы распознавания, игровые системы и системы создания интеллектуальных информационных систем (рисунок 2).

При этом системы могут решать не одну, а несколько задач или в процессе решения одной задачи решать и ряд других. Например, при обучении иностранному языку система может решать задачи распознавания речи обучаемого, тестировать, отвечать на вопросы, переводить тексты с одного языка на другой и поддерживать естественно-языковой интерфейс работы. Классификация интеллектуальных информационных систем по решаемым задачам рисунок 2 ( приложение А).

Если классифицировать интеллектуальные информационные системы по критерию «используемые методы», то они делятся на жесткие, мягкие и гибридные. (рисунок 3).

Мягкие вычисления – это сложная компьютерная методология, основанная на нечеткой логике, генетических вычислениях, нейрокомпьютинге и вероятностных вычислениях. Жесткие вычисления – традиционные компьютерные вычисления (не мягкие). Гибридные системы – системы, использующие более чем одну компьютерную технологию (в случае интеллектуальных систем – технологии искусственного интеллекта). Рисунок 3. Классификация интеллектуальных информационных систем по методам (приложение Б).


Возможны и другие классификации, например выделяют системы общего назначения и специализированные системы (рисунок 4).

Специализированные системы

Системы общего назначения

Системы, основанные на знаниях

Самоорганизующиеся системы

Системы
эвристического поиска

Экспертные системы

Интеллектуальные пакеты прикладных программ

Нейросистемы

Робототехнические системы

Системы распознавания

Игровые системы

Системы общения

Системы обработки текстов

Системы речевого общения

Системы машинного перевода

Системы генерации музыки

Рисунок 4. Классификация интеллектуальных систем по назначению

Кроме того, эта схема отражает еще один вариант классификации по методам: системы, использующие методы представления знаний, самоорганизующиеся системы и системы, созданные с помощью эвристического программирования. Также в этой классификации системы генерации музыки отнесены к системам общения.

К интеллектуальным системам общего назначения относятся системы, которые не только исполняют заданные процедуры, но на основе метапроцедур поиска генерируют и исполняют процедуры решения новых конкретных задач.

Специализированные интеллектуальные системы выполняют решение фиксированного набора задач, предопределенного при проектировании системы.

Отсутствие четкой классификации также объясняется многообразием интеллектуальных задач и интеллектуальных методов, кроме того, искусственный интеллект – активно развивающаяся наука, в которой новые прикладные области осваиваются ежедневно.

Глава 2. Графические образы и когнитивной графики

2.1 Распознавание графических и когнитивной графики образов

Объектом приложения методов распознавания графических образов и когнитивной графики явилась перспективная НС КИС, ориентированная на обработку информации со спутников. Перечислим некоторые задачи обработки космической информации:


1) обнаружение локальных объектов на аэрокосмических снимках,

2) кластеризация и распознавание целевых объектов,

3) определение местоположения объекта в заданной системе координат,

4) сжатие и восстановление графической информации,

5) фильтрация,

6) прогнозирование данных телеметрии (временных рядов),

7) обнаружение неисправностей и НШС.

Технологию первичной обработки информации составляют волновые алгоритмы выделения объектов на снимках, методы удаления заведомо ложных объектов и нормализации претендентов на распознавание. Большое значение для качества работы ИНС имеет приведение графических объектов к стандартному виду в смысле ориентации и масштаба.

Рисунок 4 - Взаимосвязь направлений

Рисунок 5- Технология обнаружения нормализации ЛА

ИНС используются в самом конце технологической цепочки, причем от качества предобработки и типа нейронной сети в значительной мере зависит результат распознавания. Это связано с большой чувствительностью ИНС к наличию шумов, положению и масштабу образов и т.д.

Рисунок 6 – Структуры использования ИНС

Кроме типовых сетей можно формировать и специальные сети. Результаты

работы нейронных сетей (в основном использовались сети прямого распространения, Хемминга и Кохонена): примерно 60%-80% правильного распознавания. Результат удается несколько улучшить за счет, применения комитетов ИНС.

Рисунок 6 – Результаты распознавания с использование ИНС Хемминга

Для улучшения результатов отделения целевых объектов от ложных использован комплекс методов специальной обработки, в том числе методы выделения контуров, сжатия пространства признаков, выделения «скелетного изображения» и др.

Рисунок 7 – Структурный метод построения скелетного изображения.

Так, например, задача определения воздушной цели потребовала использования технологии выделения контуров, вычисления инвариантных моментов и применения обобщенной метрики Евклида-Махаланобиса.

 

Рисунок 8 – Структурный метод построения контуров


        

Рисунок 9 – Выделение регионов

Важная по значимости прикладная задача – выделение регионов. Регион – это область на космическом снимке, которая представляет по ряду причин интерес для пользователя. Предложенная технология формирования эталонных текстур и обобщенная метрика решают достаточно уверенно поставленную задачу даже без знания спектральных характеристик точек поверхности, получаемых со спутников в результате дистанционного зондирования Земли.

 

Рисунок 10- фильтрация Хопфилда

         

Рисунок 11- Фильтрация Хопфилда

Обобщенная метрика является универсальной. Она в отличие от метрики Махаланобиса применима в случаях, когда выделяемая область содержит совершенно одинаковые или очень близкие по яркости пиксели, т.е. когда нет разброса яркостных параметров.

Другая не менее важная задача – сжатие и фильтрация графической информации. Фильтрация осуществляется сетью Хопфилда, а сжатие сетью Кохонена. Сеть Кохонена проигрывает при прочих равных условиях алгоритмуJPEG-2000, однако здесь имеет место элемент защиты информации, т.к. без знания настроек сети расшифровать целевую информацию невозможно.

Отдельное направление исследований связано с анализом изображений для медицинских приложений. Исходные данные в виде наборов признаков и соответствующих им классов получают на основе наблюдения под микроскопом графических изображений образцов биологической жидкости пациентов (фаций). Для распознавания используют знания экспертов – высококвалифицированных врачей, предоставляемые в виде прецедентов.

Диагноз степени заболевания мочекаменной болезнью (норма, низкая, умеренная, высокая) пациента получают на основе автоматического измерения цвето-яркостных характеристик полутонового снимка. Признаки отражают соотношения черного и белого цветов соответственно в белковой и кристаллической зоне фации, корреляцию яркостей изображений белковой и кристаллической зон и другие соотношения, на основе которых удается построить диагноз с использованием деревьев решения и нейронных сетей.

2.2 Когнитивная графика

В настоящее время нет единых принципов когнитивного отображения информации, но есть понимание того факта, что графические образы способны нести в себе в сжатой и одновременно с этим доступной для пользователя форме информацию достаточную для принятия адекватного решения. Каждый образ создается индивидуально с учетом конкретной прикладной области, изучается в процессе жизненного цикла объекта и интерпретируется экспертом с использованием накопленных знаний. Многомерные данные с помощью ЭВМ могут быть соотнесены в когнитивный графический образ в виде интегральных функциональных профилей или сцен, отражающих особенности состояния объекта. Единый математический аппарат анализа и общие методы визуализации многомерных данных в настоящее время отсутствуют. Очевидно, речь может идти об интеграции и оптимизации таких представлений применительно к конкретным прикладным областям.


Для построения схемы решения задачи распознавания образов удобно

пользоваться средствами графического интерфейса, которые позволяют не только формировать алгоритм обработки данных подключением соответствующих исполнительных модулей, но и отслеживать порядок решения в динамике путем цветовой подсветки соответствующих связей.

 

Рисунок 12 - Средствами графического интерфейса

 

Рисунок 13- Виртуальный контроль

Для контроля настройки ИНС с небольшим числом нейронов применяется специальный графический динамический образ. Такое представление позволяет видеть состояние сети, знаки коэффициентов (синий и красный цвета) и величины весовых коэффициентов, путем их отображения оттенками синего и красного цветов. 

Рисунок 14 – Визуальный процесс пуска РКН

  

Рисунок 15 – Визуальный процесс НКС КНС

Выполнялись работы по визуализации космической информации для повышения оперативности работы операторов. Пуск ракеты космического назначения охватывает порядка 20 процессов и визуализируется в виде когнитивной круговой диаграммы. Активные процессы отображаются темно-зелеными секторами, неактивные – светло-зелеными. Красным цветом выделяется состояние подсистемы, где имеет место сбой.  Возможная поломка подсистемы представляется графическим образом второго уровня. Если наблюдаемая подсистема характеризуется совокупностью измеряемых параметров, то возникает кольцевое изображение третьего типа, контролирующее выход за допустимые пределы отдельных параметров.       

За общим состоянием НС КИС следит специальный интерфейс, который снабжен когнитивным графическим дополнением. Если какой-либо из параметров вышел из нормы, то отличительный цвет сектора обобщенного образа дает знать о том, где произошли сбои в работе системы или возникли неблагоприятные условия. Когнитивное дополнение к интерфейсу НС КИС имеет двухуровневую систему вложения.

Контроль исправности датчиков положения космического аппарата реализуется путем визуализации его трехмерной модели, подключенной к потоку телеметрии. По поведению модели легко обнаруживаются сбои конкретных датчиков.