Файл: Основные подходы к построению систем искусственного интеллекта (Определение сфер применения систем искусственного интеллекта).pdf

ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 29.06.2023

Просмотров: 457

Скачиваний: 12

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Введение

Глава 1. Сущность функционирования основных задач искусственного интелекта.

1.1. Определение сфер применения систем искусственного интеллекта

1.2.Основные элементы и задачи искусственного интеллекта

Глава 2. Анализ имеющихся подходов в сфере модернизации и построения систем искусственного интеллекта.

2.1. Состав и содержание основных подходов

2.2. Основные проблемы встречающиеся при построении систем искусственного интеллекта.

Глава 3. Обеспечение бесперебойного функционирования систем искусственного интеллекта на базе корректно выбранных подходов к его построению.

3.1 Алгоритмы поиска оптимального пути

Результаты применения исследуемой архитектуры в простейшем игровом симуляторе

Универсальный алгоритмический интеллект.

Сама идея данного подхода известна давно, но получил он признание сравнительно недавно в основном через работы [Hutter, 2001], [Schmidhuber, 2003] и другие работы этих авторов. В его рамках основной упор делается на модели универсальной индукции Соломонова, включенные в систему выбора действий в окружающей среде для максимизации некоторой оценивающей функции. Здесь анализ начинается с простой универсальной модели, на которую не накладываются ресурсные ограничения.

Первый шаг подхода аналогичен, так как можно предположить, что свойство универсальности крайне желательно сразу вводить в модель универсального ИИ и поддерживать сохранение этого свойства при развитии модели, которое осуществляется путем ввода ресурсных ограничений. В современных версиях рассматриваемых подходов ресурсные ограничения также вводятся, но с сохранением максимальной непредвзятости универсального ИИ, что позволяет строить общие модели самооптимизации. Такой учет ограничений на ресурсы, однако, не вполне достаточен. Можно сказать, что он требует воспроизводства целиком эволюции, которая также начиналась как универсальный самооптимизирующийся поиск без какой-либо априорной информации.

Очевидно, чтобы становление подобного универсального интеллекта могло быть осуществлено за обозримое время, необходимо в него закладывать как достаточно большой объем априорной информации о структуре внешнего мира, так и эвристики для сокращения перебора вариантов моделей и действий. Эти эвристики как раз можно почерпнуть из феноменологии когнитивных функций естественного интеллекта. С другой стороны, в сильный ИИ нерационально вручную закладывать слишком большой объем специфичных знаний, которые он может почерпнуть самостоятельно. Очевидно, необходимо достижение оптимального компромисса между этими двумя крайностями. Помимо этого, отдельный вопрос для обсуждения заключается в том, а действительно ли представленные модели являются универсальными. Для этого необходимо тщательно сравнить гипотетические возможности этих моделей с возможностями человека. Отчасти такие сравнения проводятся (например, [Hutter, 2005]), хотя их нельзя назвать бесспорными или исчерпывающими. Тем не менее, сомнения в действительной универсальности этих моделей вполне можно выдвинуть, что будет показано при анализе нашей собственной модели универсального алгоритмического интеллекта.

Сейчас можно отметить лишь одно из таких сомнений, которое заключается в том, что интеллект лишь в нулевом приближении можно свести к максимизации априорно заданной целевой функции. Ведь если, скажем, задача интеллекта заключается в обеспечении выживания, то априорно заданная целевая функция (базирующаяся, скажем, на эмоциональных оценках) может быть лишь грубой эвристической аппроксимацией цели выживания. Это означает необходимость существования специальных механизмов, позволяющих каким-то образом уточнять целевую функцию в онтогенезе. Здесь можно привести следующую аналогию с шахматами. Пусть один интеллектуальный агент может сыграть только одну партию. Имея ограниченные вычислительные ресурсы, он не может осуществить полный перебор вариантов, чтобы предсказать победу или поражение. Рождаясь с минимумом априорных знаний о мире, он не может иметь сложную целевую функцию, которая бы позволяла эффективно отсекать неперспективные варианты на дереве игры. Исходная целевая функция может опираться лишь на какие-то непосредственно воспринимаемые стимулы, скажем на суммарную силу фигур (дающую ощущение боли и удовольствия при потере своей фигуры или съедении В процессе взросления (игры) агент может построить более сложные понятия, но самостоятельно (не прожив жизнь целиком) он в принципе не сможет определить, как на основе этих понятий можно улучшить целевую функцию. Эту информацию ему, однако, могут дать другие агенты, но только при условии, что имеется некий хороший механизм модификации целевой функции. Этот аспект имеет отношение и к проблеме дружественного ИИ

Подход на основе обучения целевым функциям. [14] Проблема обучения целевым функциям иногда рассматривается в качестве основополагающей при построении сильного ИИ (или, точнее, дружественного ИИ [Yudkowsky, 2011]). В рамках этого подхода совершенно справедливо замечается, что максимизация априорной целевой функции недостаточна для того, чтобы искусственный интеллект оказался универсальным, особенно, в части эффективного (и желаемого) взаимодействия с социальным окружением, которое является таким же элементом объективной реальности, как и физическое окружение. Проблема наделения ИИ способностью к модификации собственной целевой функции нетривиальна в силу того, что не ясно, как целевая функция может оптимизироваться, если не под управлением другой целевой функции (или каких-то других априорных механизмов). ____________________________________________________________

Важность возможности модификации целевой функции связана не только с тем, что это необходимо для полноценной универсальности агента, но и с тем, что ИИ, стремящийся к максимизации априорной целевой функции, вполне может найти такие действия, оптимальные с точки зрения этой функции, которые окажутся крайне нежелательными для людей [Yudkowsky, 2011]. Хотя важность этих аспектов бесспорна, их рассмотрение вне конкретных моделей универсaльного интеллекта не позволяет наметить путь создания сильного ИИ (а, скорее, задает некоторые ограничения на пути его создания), поэтому данный подход следует считать комплементарным другим подходам. Возможность модификации целевой функции необходимо предусмотреть в архитектуре универсального интеллектуального агента, хотя в целом это можно рассматривать на том же уровне, что и другие когнитивные функции, а именно, как специфическую эвристику повышения эффективности развития «младенческого» ИИ до уровня «взрослого» ИИ;

Заключение.

Создание системы искусственного интеллекта прежде всего требует тщательно организованной работы, а так же обладания всеми необходимыми знаниями для создания действительно рабочей системы удовлетворяющей все запросы пользователя. Главенствующим фактором в решении данного вопроса является выбор необходимого подхода в построении системы исключающей сбои в работе механизма. Имеющиеся в современной практике системы с течением времени имеют свойство изменяться и модернизироваться в следствии совершенствования мира информационных технологий, приобретая совершенно иные вариации и структуры.

Имея тесную связь с кибернетикой это направение стремиться проникнуть во все сферы деятельности человечества вобрав в себя разнообразные данные навыки и системы управления.Содержательная сложность интеллекта, его когнитивная архитектура, – это то, что позволяет действовать нам в имеющемся окружающем мире в условиях ограниченных ресурсов и без чрезмерно длительного обучения. Однако это же и значит, что главная сложность нашего интеллекта связана именно с его оптимизированностью под окружающий мир. Проще говоря структура такого интеллекта совершенно не может быть выведена теоретически в универсальных моделях интеллекта, а скорее должна быть получена эмпирически как-бы самим универсальным интеллектом, либо разработчиками. И конечно же, люди при всем этом желают создать нaстолько универсальный интеллект, нaсколько это возможно.

Говоря точнее, такой интеллект может быть настолько же универсальным, насколько являются упоминавшиеся простейшие модели. Разница между ними будет лишь в смещении предпочтений или предвзятости по направлению к нашему миру.

Естественно, повышение эффективности такого интеллекта для нашего мира произойдет за счет снижения его эффективности(ноне до нуля, в чем и заключается универсальность) в каких-то других возможных мирах, однако, с учетом того, что ему предстоит действовать в первую очередь в нашем мире, это является вполне допустимым. И подводя итог, хотелось бы отметить, важность, значимость и универсальность системы искуственного интелекта в мире, так как данная система существенно упрощая многие элементы делает возможным воплощение в жизнь все новых возможностей компьютерных технологий.

Список литературы

[9] Электронный справочный ресурс https://helpiks.org

А это куда более сложная и до конца пока не решенная задача, нежели организация поиска по дереву альтернативных возможностей. Стохастические игры появляются тогда, когда в процессе игры возникают вероятностные шаги или очередная ситуация формируется при участии некоторого вероятностного механизма. С программированием таких игр (например, карточной игры в очко) связано развитие методов правдоподобного оценивания вариантов, получившего в искусственном интеллекте заметное использование. Во всех таких ситуациях важно уметь пересчитать оценку правдоподобия результирующей ситуации после выбора определенного хода с учетом оценок правдоподобия текущей ситуации и выбора противника. [5]К стохастическим играм примыкают и игры с неполной информацией, когда при принятии решения необходимо как-то оценивать недостающую информацию. Эти приемы постоянно используются при обращении к содержимому памяти в интеллектуальных системах, когда в ней отсутствует нужная информация, что является почти стандартной ситуацией при функционировании таких систем в сложных предметных областях. [6]Комьютерные игры, получившие в последнее время столь широкое распространение, вообще говоря, не относятся традиционно к работам по искусственному интеллекту. Хотя эта ситуация столь же случайна, как и ситуация с распознаванием образов. Конечно, игры с жесткой схемой, в которых "интеллекта" практически нет, не представляют для работ по искусственному интеллекту интереса, но сценарные игры уж точно относятся к рассматриваемой области науки. В них используются сценарии развития игры, движение по которым определяется обоими партнерами.

[5] Функциональное программирование на языке Haskell. Автор: Роман Душкин. ДМК-Пресс, 2016 г. 403 стр.

[6] Робинсон Дж. Логическое программирование – прошлое, настоящее и будущее. – В кн. Логическое программиование. Сб.статей / Пер. с англ. и фр. под ред. В.Н.Агафонова. – М.: Мир, 1988. – С.8-26.

Эти же принципы применяются и в таких типичных для искусственного интеллекта задачах, как организация диалога интеллектуальной системы с пользователем на ограниченном естественном языке, интересны сценарии и для планирования целесообразной деятельности в интеллектуальных работах и других системах искусственного интеллекта.

С самого начала появления ЭВМ стали создаваться программы для машинного перевода и автоматического реферирования текстов. Создание этих программ оказало значительное влияние на развитие искусственного интеллекта, заложило основы тех работ, которые были непосредственно связаны с естественно-языковым общением пользователей с интеллектуальными системами.


В системах машинного перевода были разработаны модели и методы, позволяющие автоматически проводить морфологический, синтаксический и во многом семантический анализ фраз естественного языка, нащупаны приемы анализа связного текста. Все эти результаты активно используются при обработке естественно-языковых текстов в интеллектуальных системах.

В работах по автоматическому реферированию были заложены основы понимания общей структуры текста как целого, от идеи "что говорится" был сделан переход к идее "о чем говорится". Это позволило на более высоком уровне создавать программы генерации текстов. Если первые программы такого вида основывались на жестких моделях порождения или вероятностных механизмах, то более поздние программы генерации текстов стали опираться на идеи сценариев, а также на приемы, наработанные в программах по автоматическому реферированию. Сейчас качество прозаических текстов, создаваемых с помощью ЭВМ, достаточно высоко, если тексты имеют жесткую внутреннюю структуру, определяемую их назначением. Таковы, например, волшебные сказки, в основе которых лежит жесткий сценарий поведения действующих лиц, таковы хроникальные заметки или документы, но созданы и достаточно любопытные программы, порождающие поэтические тексты, в которых наблюдается иная крайность — почти полное отсутствие смысловой структуры при достаточно жесткой структуре формы.

Музыкальные программы, пожалуй, наиболее известны широкой публике, так как первые опыты по созданию таких программ сразу дали весьма обнадеживающие результаты. Этот успех связан опять-таки с наличием, с одной стороны, жестких правил при построении мелодии, а с другой стороны, во многом вероятностными моделями, порождающими остальные элементы музыкального произведения. Менее известны широкой публике программы, ориентированные на музыковедов, в которых имитируются стили исполнения или исследуется "анатомия" музыкальных произведений и процесса их сочинения. Однако весь комплекс музыкальных программ, хотя и не оказал прямого влияния на работы по искусственному интеллекту, стал полезным для формирования общего взгляда на природу творческих процессов и их моделирования. [10]

Узнающие программы зародились в недрах исследований по распознаванию образов. Но, как уже говорилось, многие из них оказали значительное влияние на идеи, характерные для работ по созданию интеллектуальных систем, особенно при создании обучающих систем.

При их разработке были найдены методы оценивания похожести одних объектов на другие, заложены основы рассуждений по аналогии и ассоциации, использования обучающих последовательностей примеров и контрпримеров; все это вошло в фонд методов, которыми пользуется специалист по искусственному интеллекту. [11]


[10] Электронный ресурс http://www.libed.ru.

[11] Марков В.Н. Современное логическое программирование на языке Visual Prolog 7.5 БХВ-Петербург, 2016. — 544 с.: ил. — (Учебная литература для вузов)

Несколько особняком стоят программы, с помощью которых создаются машинные произведения в области графики и живописи. Эти исследования связаны, в основном, с появлением специальных программных и в меньшей мере аппаратных средств для устройств графического вывода. Но косвенно эти программы оказывают влияние на те разделы искусственного интеллекта, которые связаны с использованием зрительных образов при решении задач.

Третье основное направление в создании искусственного интеллекта образует его фундамент. Именно здесь создается теория данного научного направления, решаются основные проблемы, связанные с центральным объектом изучения искусственного интеллекта — знаниями.

Существуют различные подходы к построению систем ИИ. Это разделение не является историческим, когда одно мнение постепенно сменяет другое, и различные подходы существуют и сейчас. Кроме того, поскольку по-настоящему полных систем ИИ в настоящее время нет, то нельзя сказать, что какой-то подход является правильным, а какой-то — ошибочным. [10]

Кратко рассмотрим логический подход. Почему он возник? Ведь человек занимается отнюдь не только логическими измышлениями. Это высказывание, конечно, верно, но именно способность к логическому мышлению очень сильно отличает человека от животных.

Основой для данного логического подхода служит Булева алгебра. Каждый программист знаком с нею и с логическими операторами с тех пор, когда он осваивал оператор IF. Свое дальнейшее развитие Булева алгебра получила в виде исчисления предикатов — в котором она расширена за счет введения предметных символов, отношений между ними, кванторов существования и всеобщности. Практически каждая система ИИ, построенная на логическом принципе, представляет собой машину доказательства теорем. [12]

[10] Электронный ресурс http://www.libed.ru.

[12] 2009-2018 — ПСИХОЛОГОС — Энциклопедия практической психологии (март 2018г.)

При этом исходные данные хранятся в базе данных в виде аксиом, правила логического вывода существуют как отношения между ними. Кроме того, каждая такая машина имеет блок генерации цели, и система вывода пытается доказать данную цель как теорему. Если цель доказана, то трассировка примененных правил позволяет получить цепочку действий, необходимых для реализации поставленной цели. Мощность такой системы определяется возможностями генератора целей и машиной доказательства теорем.


Конечно, можно сказать, что выразительности алгебры высказываний не хватит для полноценной реализации ИИ, но стоит вспомнить, что основой всех существующих ЭВМ является бит — ячейка памяти, которая может принимать значения только 0 и 1. Таким образом, было бы логично предположить, что все, что возможно реализовать на ЭВМ, можно было бы реализовать и в виде логики предикатов. Хотя здесь ничего не говорится о том, за какое время.

Добиться большей выразительности логическому подходу позволяет такое сравнительно новое направление, как нечеткая логика. Основным ее отличием является то, что правдивость высказывания может принимать в ней, кроме "да/нет" (1/0), еще и промежуточные значения — "не знаю" (0.5), "пациент скорее жив, чем мертв" (0.75), "пациент скорее мертв, чем жив" (0.25). Данный подход больше похож на мышление человека, поскольку мы на вопросы редко отвечаем только "да" или "нет". Хотя, правда, на экзамене будут приниматься только ответы из разряда классической булевой алгебры.

Для большинства логических методов характерна большая трудоемкость, поскольку во время поиска доказательства возможен полный перебор вариантов. Поэтому данный подход требует эффективной реализации вычислительного процесса, и хорошая работа обычно гарантируется при сравнительно небольшом размере базы данных.

Под структурным подходом мы подразумеваем здесь попытки построения ИИ путем моделирования структуры человеческого мозга. Одной из первых таких попыток был персептрон Френка Розенблатта. Основной моделируемой структурной единицей в персептронах (как и в большинстве других вариантов моделирования мозга) является нейрон.

Позднее возникли и другие модели, которые в просторечии обычно известны под термином "нейронные сети" (НС). Эти модели различаются по строению отдельных нейронов, по топологии связей между ними и по алгоритмам обучения. Среди наиболее известных сейчас вариантов НС можно назвать НС с обратным распространением ошибки, сети Хопфилда, стохастические нейронные сети.

НС наиболее успешно применяются в задачах распознавания образов, в том числе сильно зашумленных, однако имеются и примеры успешного использования их для построения собственно систем ИИ — это ТАИР.

Для моделей, построенных "по мотивам" человеческого мозга, характерна не слишком большая выразительность, легкое распараллеливание алгоритмов и связанная с этим высокая производительность параллельно реализованных НС. Также для таких сетей характерно одно свойство, которое очень сближает их с человеческим мозгом, — нейронные сети работают даже при условии неполной информации об окружающей среде, то есть, как и человек, они на вопросы могут отвечать не только "да" и "нет", но и "не знаю точно, но скорее да".


Довольно большое распространение получил и эволюционный подход. При построении систем ИИ по данному подходу основное внимание уделяется построению начальной модели, и правилам, по которым она может изменяться (эволюционировать). Причем модель может быть составлена по самым различным методам, это может быть и НС, и набор логических правил, и любая другая модель. После этого мы включаем компьютер, и он на основании проверки моделей отбирает самые лучшие из них, на основе которых по самым различным правилам генерируются новые модели, из которых опять выбираются самые лучшие и т. д.

В принципе, можно сказать, что эволюционных моделей как таковых не существует, существуют только эволюционные алгоритмы обучения, но модели, полученные при эволюционном подходе, имеют некоторые характерные особенности, что позволяет выделить их в отдельный класс.

Такими особенностями являются перенесение основной деятельности разработчика с построения модели на алгоритм ее модификации и то, что полученные модели практически не сопутствуют извлечению новых знаний о среде, окружающей систему ИИ, то есть она становится как бы вещью в себе.Еще один широко используемый подход к построению систем ИИ — имитационный . Данный подход является классическим для кибернетики с одним из ее базовых понятий — "черным ящиком" (ЧЯ). ЧЯ — устройство, программный модуль или набор данных, информация о внутренней структуре и содержании которых отсутствуют полностью, но известны спецификации входных и выходных данных. Объект, поведение которого имитируется, как раз и представляет собой такой "черный ящик". Нам не важно, что у него и у модели внутри и как он функционирует, главное, чтобы наша модель в аналогичных ситуациях вела себя точно так же.

Таким образом здесь моделируется другое свойство человека — способность копировать то, что делают другие, не вдаваясь в подробности, зачем это нужно. Зачастую эта способность экономит ему массу времени, особенно в начале его жизни.

Основным недостатком имитационного подхода также является низкая информационная способность большинства моделей, построенных с его помощью.

С ЧЯ связана одна очень интересная идея. Кто бы хотел жить вечно? Я думаю, что почти все ответят на этот вопрос "я".

Представим себе, что за нами наблюдает какое-то устройство, которое следит за тем, что в каких ситуациях мы делаем, говорим. Наблюдение идет за величинами, которые поступают к нам на вход (зрение, слух, вкус, тактильные, вестибулярные и т. д.), и за величинами, которые выходят от нас (речь, движение и др.). Таким образом человек выступает здесь как типичный ЧЯ.