Добавлен: 30.06.2023
Просмотров: 63
Скачиваний: 3
Введение
Во многих областях практической деятельности человека мы сталкиваемся с необходимостью пребывания в состоянии ожидания. Подобные ситуации возникают в очередях в билетных кассах, в крупных аэропортах, при ожидании обслуживающим персоналом самолетов разрешения на взлет или посадку, на телефонных станциях в ожидании освобождения линии абонента, в ремонтных цехах в ожидании ремонта станков и оборудования, на складах снабженческо-сбытовых организаций в ожидании разгрузки или погрузки транспортных средств. Во всех перечисленных случаях имеем дело с массовостью и обслуживанием. Изучением таких ситуаций занимается теория массового обслуживания.
Основной задачей теории СМО является изучение режима функционирования обслуживающей системы и исследование явлений, возникающих в процессе обслуживания.
Исследование СМО очень часто проводят при помощи компьютерного моделирования.
Компьютерное моделирование нашло практическое применение во всех сферах деятельности человека, начиная от моделей технических, технологических и организационных систем и заканчивая проблемами развития человечества и вселенной. Одно из преимуществ компьютерного моделирования – это также моделирование того, что не существует на самом деле, то есть моделирование виртуальной реальности.
Когда же необходимо использовать компьютерное моделирование? Всегда, когда можно поставить вопрос, «что будет, если ...?». Следовательно, компьютерное моделирование используют, прежде всего, для принятия решений. Модель позволяет проигрывать любые ситуации и получать наиболее эффективные решения проблемы.
Из всех видов моделирования имитационное моделирование является едва ли не самым популярным средством, используемым на практике. Основная его ценность состоит в применении методологии системного анализа. Имитационное моделирование разрешает осуществить исследование анализируемой или проектируемой системы по схеме операционного исследования, которое содержит взаимосвязанные этапы:
– содержательная постановка задачи;
– разработка концептуальной модели;
– разработка и программная реализация имитационной модели; проверка правильности,
– достоверности модели и оценка точности результатов моделирование;
– планирование и проведение экспериментов;
– принятие решений.
Это позволяет использовать имитационное моделирование как универсальный подход для принятия решений в условиях неопределенности c учетом в моделях трудно формализуемых факторов, А также применять основные принципы системного подхода для решения практических задач.
Широкому внедрению этого метода на практике препятствует необходимость создания программных реализаций имитационных моделей, которые воссоздают в модельном времени динамику функционирования моделируемой системы. В отличие от традиционных методов программирования разработка имитационной модели требует перестройки принципов мышления. Недаром принципы, положенные в основу имитационного моделирования, дали толчок к развитию объектного программирования. Поэтому усилия разработчиков программных средств имитации направлены на упрощение программных реализаций имитационных моделей: для этих целей создаются специализированные языки и системы. Программные средства имитации в своем развитии изменялись на протяжении нескольких поколений, начиная c языков моделирования и средств автоматизации конструирования моделей до генераторов программ, интерактивных и интеллектуальных систем, распределенных систем моделирования. Основное назначение всех этих средств – уменьшение трудоемкости создания программных реализаций имитационных моделей и экспериментирования c моделями.
1 Обзор подходов
Многие экономические задачи связаны с системами массового обслуживания (СМО), т.е. такими системами, в которых, с одной стороны, возникают массовые запросы (требования) на выполнение каких-либо услуг, с другой - происходит удовлетворение этих запросов. СМО включает в себя следующие элементы: источник требований, входящий поток требований, очередь, обслуживающие устройства (каналы обслуживания), выходящий поток требований. Исследованием таких систем занимается теория массового обслуживания.
Методами теории массового обслуживания могут быть решены многие задачи исследования процессов, происходящих в экономике. Так, в организации торговли эти методы позволяют определить оптимальное количество торговых точек данного профиля, численность продавцов, частоту завоза товаров и другие параметры. Другим характерным примером систем массового обслуживания могут служить склады или базы снабженческо-сбытовых организаций, и задача теории массового обслуживания в данном случае сводится к тому, чтобы установить оптимальное соотношение между числом поступающих на базу требований на обслуживание и числом обслуживающих устройств, при котором суммарные расходы на обслуживание и убытки от простоя транспорта были бы минимальными. Теория массового обслуживания может найти применение и при расчете площади складских помещений, при этом складская площадь рассматривается как обслуживающее устройство, а прибытие транспортных средств под выгрузку - как требование. Модели теории массового обслуживания применяются также при решении ряда задач организации и нормирования труда, других социально-экономических проблем.
Системы массового обслуживания могут быть классифицированы по ряду признаков.
1. В зависимости от условий ожидания начала обслуживания различают:
- СМО с потерями (отказами);
- СМО с ожиданием.
В СМО с отказами требования, поступающие в момент, когда все каналы обслуживания заняты, получают отказ и теряются. Классическим примером системы с отказами является телефонная станция. Если вызываемый абонент занят, то требование на соединение с ним получает отказ и теряется.
В СМО с ожиданием требование, застав все обслуживающие каналы занятыми, становится в очередь и ожидает, пока не освободится один из обслуживающих каналов.
СМО, допускающие очередь, но с ограниченным числом требований в ней, называются системами с ограниченной длиной очереди.
СМО, допускающие очередь, но с ограниченным сроком пребывания каждого требования в ней, называются системами с ограниченным временем ожидания.
2. По числу каналов обслуживания СМО делятся на:
- одноканальные;
- многоканальные.
3. По месту нахождения источника требований СМО делятся на:
- разомкнутые, когда источник требования находится вне системы;
- замкнутые, когда источник находится в самой системе.
Возможны и другие признаки классификации СМО, например по дисциплине обслуживания, однофазные и многофазные СМО и др.
Методы и модели, применяющиеся в теории массового обслуживания, можно условно разделить на аналитические и имитационные.
Аналитические методы теории массового обслуживания позволяют получить характеристики системы как некоторые функции параметров ее функционирования. Благодаря этому появляется возможность проводить качественный анализ влияния отдельных факторов на эффективность работы СМО. Имитационные методы основаны на моделировании процессов массового обслуживания на ЭВМ и применяются, если невозможно применение аналитических моделей; ряд основных понятий имитационного моделирования рассмотрен в параграфе 3.5. Далее будем рассматривать аналитические методы моделирования СМО.
Приведем общую классификацию основных видов моделирования:
- концептуальное моделирование – представление системы с помощью специальных знаков, символов, операций над ними или с помощью естественных или искусственных языков,
- физическое моделирование – моделируемый объект или процесс воспроизводится исходя из соотношения подобия, вытекающего из схожести физических явлений;
- структурно – функциональное – моделями являются схемы (блок-схемы), графики, диаграммы, таблицы, рисунки со специальными правилами их объединения и преобразования;
- математическое (логико-математическое) моделирование –построение модели осуществляется средствами математики и логики;
- имитационное (программное) моделирование – при котором логико-математическая модель исследуемой системы представляет собой алгоритм функционирования системы, программно реализуемый на компьютере.
Указанные виды моделирования могут применяться самостоятельно или одновременно, в некоторой комбинации (например, в имитационном моделировании используются практически все из перечисленных видов моделирования или отдельные приемы).
2 Обоснование выбора
Метод имитационного моделирования в самом общем виде – это экспериментальный метод исследования реальной системы по ее имитационной модели, который сочетает особенности экспериментального подхода и специфические условия использования вычислительной техники.
Необходимо отметить, что имитационное моделирование является машинным методом моделирования, собственно без ЭВМ никогда не существовало, и только развитие информационных технологий привело к становлению этого вида компьютерного моделирования.
В процессе имитационного моделирования исследователь имеет дело с четырьмя основными элементами:
- Реальная система;
- Логико-математическая модель моделируемого объекта;
- Имитационная (машинная) модель;
- ЭВМ, на которой осуществляется имитация – направленный вычислительный эксперимент.
Исследователь изучает реальную систему, разрабатывает логико-математическую модель реальной системы. Имитационный характер исследования предполагает наличие логико- или логико-математических моделей, описываемых изучаемый процесс.
Особенностью имитационного моделирования является то, что имитационная модель позволяет воспроизводить моделируемые объекты:
- с сохранением их логической структуры,
- с сохранением поведенческих свойств (последовательности чередования во времени событий, происходящих в системе), т.е. динамики взаимодействий.
При имитационном моделировании структура моделируемой системы адекватно отображается в модели, а процессы ее функционирования проигрываются (имитируются) на построенной модели. Поэтому построение имитационной модели заключается в описании структуры и процессов функционирования моделируемого объекта или системы. В описании имитационной модели выделяют две составляющие:
- Статическое описание системы, которое по существу является описанием ее структуры. При разработке имитационной модели необходимо выполнять структурный анализ моделируемых процессов.
- Динамическое описание системы, или описание динамики взаимодействий ее элементов. При его составлении фактически требуется построение функциональной модели моделируемых динамических процессов.
Идея метода, с точки зрения его программной реализации, состояла в следующем. Что если элементам системы поставить в соответствие некоторые программные компоненты, а состояния этих элементов описывать с помощью переменных состояния. Элементы, по определению, взаимодействуют (или обмениваются информацией), – значит может быть реализован алгоритм функционирования отдельных элементов –моделирующий алгоритм. Кроме того, элементы существуют во времени – значит надо задать алгоритм изменение переменных состояний.
Динамика в имитационных моделях реализуется с помощью механизма продвижения модельного времени.
Отличительной особенностью метода имитационного моделирования является возможность описания и воспроизведения взаимодействия между различными элементами системы. Таким образом, чтобы составить имитационную модель, надо:
- представить реальную систему (процесс), как совокупность взаимодействующих элементов;
- алгоритмически описать функционирование отдельных элементов;
- описать процесс взаимодействия различных элементов между собой и с внешней средой.
Ключевым моментом в имитационном моделировании является выделение и описание состояний системы. Система характеризуется набором переменных состояний, каждая комбинация которых описывает конкретное состояние. Следовательно, путем изменения значений этих переменных можно имитировать переход системы из одного состояния в другое. Таким образом, имитационное моделирование – это представление динамического поведения системы посредством продвижения ее от одного состояния к другому в соответствии с хорошо определенными операционными правилами. Эти изменения состояний могут происходить либо непрерывно, либо в дискретные моменты времени.
Имитационное моделирование – есть динамическое отражение изменений состояния системы с течением времени.
3 Имитационная модель
Проанализируем исходные данные.
1. В задании указано, что запросы поступают с интервалом 103 с. Соответственно, интервал между поступлением двух соседних запросов в систему распределен по равномерному закону.