Файл: История развития средств вычислительной техники . ..pdf

ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 17.06.2023

Просмотров: 40

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

2.4 Четвертое поколение

1980-1990-е годы. Переход к машинам четвертого поколения – ЭВМ на больших интегральных схемах(БИС) – происходил во второй половине 70-х и завершился приблизительно к 1980г.Теперь на одном кристалле размером 1 см2 стали размещаться сотни тысяч электронных элементов. Скорость и объем памяти возросли в десятки тысяч раз по сравнению с машинами первого поколения и составили примерно 109 операций в секунду и 107 слов соответственно.

Наиболее крупным достижением, связанным с применением БИС, стало создание микропроцессоров, а затем на их основе микро-ЭВМ. Если прежние поколения ЭВМ требовали для своего расположения специальных помещений, системы вентиляции, специального оборудования для электропитания, то требования, предъявляемые к эксплуатации микро-ЭВМ, ничем не отличаются от условий эксплуатации бытовых приборов. При этом они имеют достаточно высокую производительность, экономичны в эксплуатации и дешевы.

Микро-ЭВМ используются в измерительных комплексах, системах числового программного управления, в управляющих системах различного назначения.

Дальнейшее развитие микро-ЭВМ привело к созданию персональных компьютеров (ПК), широкое распространение которых началось с 1975г., когда фирма IBM выпустила свой первый персональный компьютер IBM PC.

В период машин четвертого поколения стали также серийно производиться супер-ЭВМ. В нескольких серийных моделях была достигнута производительность свыше 1 млрд. операций в секунду.

К числу наиболее значительных разработок четвертого поколения относится ЭВМ «Крей-3».

Примером отечественной супер-ЭВМ является многопроцессорный вычислительный комплекс «Эльбрус».

2.5 Пятое поколение ЭВМ

1990-настоящее время. С 1990 годов в истории развития вычислительной техники наступила пора пятого поколения. Высокая скорость выполнения арифметических вычислений дополняется высокими скоростями логического вывода.

Сверхбольшие интегральные схемы повышенной степени интеграции, использование оптоэлектронных принципов (лазеры, голография).

Способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой. Используются модели и средства, разработанные в области искусственного интеллекта. Архитектура содержит несколько блоков: блок общения – обеспечивает интерфейс между пользователем и ЭВМ на естественном языке; база знаний – хранятся знания, накопленные человечеством в различных предметных областях; решатель — организует подготовку программы решения задачи на основании знаний, получаемых из базы знаний и исходных данных, полученных из блока общения. Ядро вычислительной системы составляет ЭВМ высокой производительности.


В связи с появлением новой базовой структуры ЭВМ в машинах пятого поколения широко используются модели и средства, разработанные в области искусственного интеллекта.

2.6 Классификация ЭВМ

Существует достаточно много систем классификации по различным признакам.

1) Супер-ЭВМ предназначены для решения крупномасштабных вычислительных задач, для обслуживания крупнейших информационных банков данных. Это очень мощные компьютеры с производительностью свыше 100 мегафлопов (1 мегафлоп — миллион операций с плавающей точкой в секунду). Они называются сверхбыстродействующими. Эти машины представляют собой многопроцессорные и (или) многомашинные комплексы, работающие на общую память и общее поле внешних устройств. Различают суперкомпьютеры среднего класса, класса выше среднего и переднего края (high end).

2) Большие ЭВМ — для комплектования ведомственных, территориальных и региональных вычислительных центров. Мэйнфреймы предназначены для решения широкого класса научно-технических задач и являются сложными и дорогими машинами. Их целесообразно применять в больших системах при наличии не менее 200 — 300 рабочих мест.

3) Средние ЭВМ — широкого назначения для управления сложными технологическими производственными процессами. ЭВМ этого типа могут использоваться и для управления распределенной обработкой информации в качестве сетевых серверов.

4) Персональные и профессиональные ЭВМ, позволяющие удовлетворять индивидуальные потребности пользователей. На базе этого класса ЭВМ строятся автоматизированные рабочие места (АРМ) для специалистов различного уровня.

5) Встраиваемые микропроцессоры, осуществляющие автоматизацию управления отдельными устройствами и механизмами.

Глава 3. Развитие современной вычислительной техники

3.1 Современная вычислительная техника

Развитие современной вычислительной техники открывает перед цифровыми графическими УО неограниченные возможности в отношении воспроизводимого на экране графического материала.


Главная тенденция в развитии современной вычислительной техники состоит в переходе к использованию распределенных систем, которые образованы из логических элементов с довольно простой внутренней структурой. Большие надежды здесь связывают с молекулярной микроэлектроникой. Разрабатываются методы массового химического синтеза таких молекулярных элементов и способы их соединения в сети на основе механизмов самосборки.  

Весьма вероятно, что с развитием современной вычислительной техники будет понято, что в очень многих случаях разумно изучение реальных явлений вести, избегая промежуточный этап их стилизации в духе представлений математики бесконечного и непрерывного, переходя прямо к дискретным моделям. Особенно это относится к изучению сложно организованных систем, способных перерабатывать информацию. В наиболее развитых таких системах тяготение к дискретности работы вызвано достаточно разъясненными в настоящее время причинами. Является требующим объяснения парадоксом то обстоятельство, что человеческий мозг математика работает в существенном по дискретному принципу и тем не менее математику значительно доступнее интуитивное постижение, скажем, свойств геодезических на гладких поверхностях, чем могущих их приблизительно заменить свойств комбинаторных схем.  

Развитие современной вычислительной техники началось после того, как был введен новый принцип - принцип отделения структуры программ от структуры реализующих их деятельность физических устройств. Были созданы универсальные вычислительные машины, которые обеспечивали возможности реализации и функционирования программ разного типа.  

Благодаря развитию современной вычислительной техники, в особенности мини - и микро - ЭВМ, а также появлению необходимых алгоритмов обработки сигналов, особенно быстрого преобразования Фурье, все больше распространяются методы измерения частотных характеристик при импульсном воздействии на механический объект. Импульсы вынуждающей силы и отклика подвергаются преобразованию Фурье, и по соотношению гармоник определяется нужная характеристика.  

Они являются основным инструментом при проведении фундаментальных и прикладных физических исследований, основой развития современной вычислительной техники, радиоэлектроники, средств связи, автоматики и технической кибернетики, широко используются во многих отраслях народного хозяйства.


3.2 Развитие персонального компьютера

Главными тенденциями развития персонального компьютера на сегодняшний день являются повышение его производительности, вычислительной мощи, при понижении энергопотребления, а также использование при изготовлении компьютеров материалов, не наносящих вреда экологии планеты.

Лидером по параметрам экологичности и экономичности на сегодняшний день является компания Intel.

Другим способом повышения вычислительной мощи ПК является многопроцессорная архитектура, ранее использовавшаяся только при проектировании и изготовлении серверных решений. При использовании такой технологи на одной материнской плате размещается несколько процессоров и, соответственно, увеличивается количество данных, которые могут быть обработаны в момент времени.

Еще одной тенденцией развития является повышение емкости внешних накопителей. Разрабатываются все более и более емкие и компактные устройства на основе flash-памяти, а цены на них продолжают падать. Удельная стоимость хранения гигабайта информации неуклонно падает, что не может не радовать конечного потребителя.

Не обошло стороной развитие и оптические диски. В стандартах CD, DVD и, наиболее емком на сегодняшний день, Blu Ray для записи и хранения данных используется только отражающая поверхность диска, и повышение емкости достигается только изменением типа лазера. Новейшие разработки предполагают использовать всю толщину материала, создавая в толще диска голографическое представление двоичных данных, то есть запись ведется не по поверхности, а по объему. Таким образом, емкость привычного нам по размеру 120 мм диска можно повысить до 300 Гб, а сам диск из оптического станет голографическим.

Однако, вышеописанные технологии - это технологии еще только завтрашнего дня. Для описания компьютеров будущих поколений я приведу краткий обзор технологий, которые из теоретических, по прогнозам ученых, станут реальностью и перейдут от прототипов к массовому производству уже через 15-20 лет.

Квантовые компьютеры

Квантовый компьютер будет состоять из компонентов субатомного размера и работать по принципам квантовой механики. Квантовый мир обладает странными свойствами: объекты в нем могут занимать несколько положений одновременно.

Но именно эта странность и открывает новые возможности. Например, один квантовый бит может принимать несколько значений одновременно, то есть находиться сразу в состояниях "включено", "выключено" и в переходном состоянии. 32 таких бита, называемых q-битами, могут образовать свыше 4 млрд. комбинаций - вот истинный пример массово-параллельного компьютера. Однако, чтобы q-биты работали в квантовом устройстве, они должны взаимодействовать между собой. Пока ученым удалось связать друг с другом только три электрона.


Однако, для создания полноценного квантового компьютера, ученым еще предстоит решить ряд проблем. Прежде всего, необходимо создать элементы проводников, памяти и логики. Кроме того, эти простые элементы нужно заставить взаимодействовать друг с другом. Наконец, нужно выстроить узлы в полноценные функциональные чипы и научиться тиражировать их. По оценкам ученых, прототипы таких компьютеров могут появиться уже в 2010 году, а в 2015-2020 гг. должно начаться их массовое производство.

Оптические компьютеры

По сравнению с тем, что обещают молекулярные или биологические компьютеры, оптические ПК могут показаться не очень впечатляющими. Однако ввиду того, что оптоволокно стало предпочтительным материалом для широкополосной связи, всем традиционным кремниевым устройствам, чтобы передать информацию на расстояние нескольких миль, приходится каждый раз преобразовывать электрические сигналы в световые и обратно.

Целиком оптические компьютеры появятся через десятилетия, но работа в этом направлении идет сразу на нескольких фронтах. Например, ученые из университета Торонто создали молекулы жидких кристаллов, управляющие светом в фотонном кристалле на базе кремния. Они считают возможным создание оптических ключей и проводников, способных выполнять все функции электронных компьютеров.

Однако прежде чем оптические компьютеры станут массовым продуктом, на оптические компоненты, вероятно, перейдет вся система связи - вплоть до "последней мили" на участке до дома или офиса. В ближайшие 15 лет оптические коммутаторы, повторители, усилители и кабели заменят электрические компоненты.

Биокомпьютеры

Применение в вычислительной технике биологических материалов позволит со временем уменьшить компьютеры до размеров живой клетки. Пока это чашка Петри, наполненная спиралями ДНК, или нейроны, взятые у пиявки и подсоединенные к электрическим проводам. По существу, наши собственные клетки - это не что иное, как биомашины молекулярного размера, а примером биокомпьютера, конечно, служит наш мозг [6].

Ихуд Шапиро из Вейцмановского института естественных наук соорудил пластмассовую модель биологического компьютера высотой 30 см. Если бы это устройство состояло из настоящих биологических молекул, его размер был бы равен размеру одного из компонентов клетки - 0,000025 мм.

Билл Дитто из Технологического института штата Джорджия провел интересный эксперимент, подсоединив микродатчики к нескольким нейронам пиявки. Он обнаружил, что в зависимости от входного сигнала нейроны образуют новые взаимосвязи. Вероятно, биологические компьютеры, состоящие из нейроподобных элементов, в отличие от кремниевых устройств, смогут искать нужные решения посредством самопрограммирования. Дитто намерен использовать результаты своей работы для создания мозга роботов.