ВУЗ: Краснодарский Государственный Университет Культуры и Искусств
Категория: Лекция
Дисциплина: Логика
Добавлен: 09.02.2019
Просмотров: 8902
Скачиваний: 15
Одним из вкладов Канта в логику является отличение им логического основания и логического следствия от реальной причины и реального следствия.
Самый знаменитый представитель немецкой классической философии - Г. В. Ф. Гегель (1770-1831). Он критиковал Канта, в том числе и по вопросам логики, но его критика осуществлялась с позиций идеалистической диалектики. Логика у Гегеля совпадает с диалектикой. Поэтому, критикуя формальную логику, он отвергает последнюю. Гегель, говоря об отражении в мышлении понятий движения объективного мира, объективный мир понимал идеалистически, а именно как инобытие абсолютной идеи. Критику законов формальной логики Гегель дал во второй книге своего труда “Наука логики” в разделе “Учение о сущности”.
Рациональное зерно философии Гегеля - диалектика. Он разрабатывал проблемы диалектики мышления и диалектической логики.
Логика в России
Русские логики, такие, как П. С. Порецкий, Е. Л. Буницкий и многие другие, внесли существенный вклад в развитие логики на уровне мировых логических концепций.
Первый трактат по логике появился в России в Х в. Это был перевод философской главы из “Диалектики” византийского писателя VII в. Иоанна Дамаскина, которая представляла собой изложение работ Аристотеля и его комментариев. Первое систематическое учебное пособие по логике, включавшее аристотелевскую логику и отдельные идеи Гоббса, было подготовлено во второй половине XVII в. Тогда же в России начали распространяться отдельные идеи математической логики.
В XVIII в. в России появляются оригинальные логические результаты. Первым их добивается Михаил Васильевич Ломоносов (1711-1765). Он вносит существенные изменения в традиционную силлогистику, предлагая свою классификацию умозаключений,
отграничивает суждение от грамматического предложения и др. Дмитрий Сергеевич Аничков (1733-1788) в трактате “Заметки по логике, метафизике и космологии” (“Annotationes in logicam, metaphisicam et cosmologiam”) исследовал модальные суждения, подразделяя их на четыре вида - необходимые, невозможные” возможные и не невозможные, сформулировал систему правил для ведения диспутов.
Философ-материалист Александр Николаевич Радищев (1749-1802) одним из первых в мировой литературе поставил проблему необходимости логического анализа отношений, которого нет ни в логике Аристотеля, ни в логике средневековых схоластов. Он писал о суждениях, что они представляют собой сравнение двух понятий или познание отношений, существующих между вещами. А. Н. Радищев дает следующую классификацию умозаключений:'
1) “рассуждение” (т. е. силлогизм);
2) “уравнение”, т. е. умозаключения равенства, основанные на следующей аксиоме: равные и одинаковые вещи состоят в равном или одинаковом союзе или отношении;
3) “умозаключения по сходству”.
Русские видные публицисты В. Г. Белинский (1811-1848), А. И. Герцен (1812-1870), Н. Г. Чернышевский (1828-1889), Н. А. Добролюбов (1836-1861) активно интересовались философскими вопросами, в том числе проблемами логики. Белинский предостерегал от логических ошибок в ходе доказательства тезиса. А. И. Герцен выдвигал лозунг гармонического сочетания теоретического мышления и практической деятельности. Н. Г Чернышевский утверждал, что понятие относительности знания не означает, что оно иллюзорно или необъективно, а лишь указывает на его незаконченность.
Крупнейшими русскими логиками XIX в. были Михаил Иванович Каринский (1840-1917) и его ученик Леонид Васильевич Рутковский (1859-1920), основные логические работы которых посвящены классификации умозаключений.
_____________________
1См.: Стяжкин Н. И., Силаков В. Д. Краткий очерк истории общей и математической логики в России. М., 1962. С. 15.
Основной замысел логической теории Карийского можно характеризовать как стремление построить аксиоматико-дедуктивную систему логики, исходя из основного отношения равенства (т. е. “тождества”), и в ней описать дедуктивные и индуктивные умозаключения, не используя элементов строгой формализации. Каринский в этой концепции примыкает к идеям Джевонса, что отметили уже его современники.
Структура умозаключения, по Карийскому, такая. Из двух посылок, имеющих структуру (1) и (2), делается заключение (3).
А находится в отношении R к В. (1)
В тождествен с С. (2)
А находится в отношении R к С. (3)
Приведем примеры.
Москва находится восточнее Парижа.
Париж - столица Франции.
Москва находится восточнее столицы Франции.
Самара находится западнее озера Байкал.
Озеро Байкал - самое глубокое озеро мира.
Самара находится западнее самого глубокого озера мира.
Все выводы М. И. Каринский делит на две большие группы: 1) выводы, основанные на “сличении субъектов”, и 2) выводы, основанные на “сличении предикатов” (при этом смысл терминов “субъект” и “предикат” не совпадает с соответствующим им традиционным пониманием). Основанием выводов является тождество (или соответственно различие) “субъектов” или “предикатов”. К этим двум большим группам, по мнению Карийского, можно отнести все виды умозаключений и, кроме них, еще и гипотезу.
Известный историк логики Н. И. Стяжкин, исследуя логические идеи М. И. Карийского, пришел к выводу, что Каринский стремился охватить своей классификацией все виды умозаключений, встречающиеся в практике мышления. Но поставленная задача оказалась шире, чем принятые Каринским и положенные в основу его теории предпосылки. Она осталась нерешенной.
Леонид Васильевич Рутковский (1859-1920) - автор работы “Основные типы умозаключений” (1888). Если Каринский
пытался построить теорию выводов, используя лишь отношение тождества и сводя к нему все другие отношения, то Рутковский считает возможным признать равноправными с отношением тождества и другие отношения, например, отношения сходства, сосуществования. Так как существует многообразие отношений, поэтому имеется и многообразие видов логических выводов (т. е. видов умозаключений). Умозаключения делятся им на интенсивные (т. е. рассматриваемые в логике содержания) и экстенсивные (рассматриваемые в логике объема).
Рутковский делит все выводы на две основные группы. Первая группа — выводы подлежащих (т. е. выводы по объему) — распадается на три вида:
а) традукцию (выводы сходства, тождества, условной зависимости);
б) индукцию (полную и неполную);
в) дедукцию (гипотетическую и негипотетическую).
Вторая группа выводов - выводы сказуемых (по содержанию) - распадается на выводы “продукции” (разделительный силлогизм, выводы о совместности, современности предметов и др.), “субдукции” (выводы при классификациях и упорядочении предметов и др.), “эдукции” (отнесение предмета к виду его класса, заключения математической вероятности и др.).
Аксиома “продукции” такова: “Из того, что предмет имеет признак В, следует, что этот же предмет имеет и признак С, т. к. признак В неизменно сосуществует с признаком С”'.
Краткий анализ работ М. И. Каринского и Л. В. Рутковского показывает, что их оригинальные работы по классификации видов умозаключений способствовали прогрессивному развитию традиционной логики в XIX в.
Оригинальными были идеи казанского логика Николая Александровича Васильева (1880-1940). Его идеи возникли в результате изучения проблем традиционной логики, но их значение оказалось столь большим, что оказало влияние на развитие математической логики. Он вслед за другим русским логиком С. О. Шатуновским высказал идею о неуниверсальности закона
________________________
'Рутковский Л. В. Основные типы умозаключений // Цит. по: Избранные труды русских логиков XIX в. М., 1956. С. 312.
исключенного третьего. Если Шатуновский пришел к этой идее в результате тщательного изучения особенностей математического доказательства применительно к бесконечным множествам, то Н. А. Васильев - в результате изучения частных суждений, рассматриваемых в традиционной логике. Основными работами Н. А. Васильева являются следующие: “О частных суждениях, о треугольнике противоположностей и о законе исключенного четвертого” (1910), “Воображаемая (неаристотелева) логика” (1912)' и “Логика и металогика”. Н. А. Васильев подкреплял свои концепции формальной аналогией с неевклидовой геометрией Н. И. Лобачевского. Не все современники Васильева оценили его идеи, хотя некоторые из них считали, что он написал “остроумнейшую работу”. Логические идеи Васильева можно рассматривать, как некоторые предшествующие мысли (развитые далее в конструктивной и интуиционистской логиках) о неприменимости принципа исключенного третьего для бесконечных множеств. Васильев, кроме того, рассматривает условия, при которых представляется возможным оперировать с противоречивыми высказываниями внутри непротиворечивой логической системы.
Математическая логика
В XIX в. появляется математическая логика. Немецкий философ Г. В. Лейбниц (1646-1716) - величайший математик и крупнейший философ XVII в. - по праву считается ее основоположником, Лейбниц пытался создать универсальный язык, с помощью которого споры между людьми можно было бы разрешать посредством вычисления. При построении такого исчисления Лейбниц исходил из своего “Основного принципа разума”, который гласил, что во всех истинных предложениях, общих или частных, с необходимостью или случайно предикат содержится в субъекте. Он хотел всякому понятию дать числовую характеристику и установить такие правила оперирования с этими числами, которые позволили бы не только доказывать вообще
_________________________
'См.: Васильев Н. А. Воображаемая логика. М., 1989; Бажанов В. А. Николай Александрович Васильев. М., 1988. (Эта книга- первая научная биография Н. А. Васильева, написанная на основе ранее неизвестных и непубликовавшихся материалов).
все истины, доступные логическому доказательству, но и открывать новые. В последнем обстоятельстве он видел особую слугу своей всеобщей характеристики. Лейбниц говорит о как о чудесном общем языке, имеющем свой словарь (т. е. характеристические числа, отнесенные к понятиям) и свою грамматику (правила оперирования с этими числами). Лейбниц хотел построить арифметизированное логическое исчисление в некоторой вычисляющей машины (алгоритма). Однако этого ему сделать не удалось.
В этой концепции Лейбница неприемлемо прежде всего что все содержание наших понятий якобы может быть выражено их характеристическими числами. Несостоятельным было и представление Лейбница о том, что человеческое мышление может быть полностью заменено вычисляющей машиной. ..
Лейбниц полагал, что математику можно свести к логике, а логику считал априорной наукой. Сторонников такого обоснования математики называют логицистами — представителями субъективно-идеалистического направления (считающего первичным сознание человека) в обосновании математики.
Лейбниц является предшественником логицизма в том смысле, что он предложил сведение математики к логике и математизацию логики: построение самой логики как некоторой арифметики или буквенной алгебры. Но Лейбниц был предшественникам логицизма и в том, что пытался создать арифметизированное логическое исчисление, о котором мы говорили.
Покажем, как это делал Лейбниц. Возьмем такой категорический силлогизм:
+70, -30 +10, -3
Всякий мудрый есть благочестивый.
+70, -33 +8, -11
Некоторые мудрые богаты.
+8, -11 +10, -3
Некоторые богатые благочестивы.
Сверху над понятием написан выбранный наудачу правильный (по Лейбницу) набор характеристических чисел для терминов посылок. Истинность общеутвердительного суждения “Все S суть Р” (первая посылка) выражается тем, что обе характеристики субъекта делятся на соответствующие характеристики предиката, т. е. 70 (точно, без остатка) делится на 10, а - 33 делится на - 3, и числа, стоящие на диагоналях, - взаимно простые, т. е. + 70 и - 3 так же, как
-33 и + 10, взаимно простые числа. Истинность частноутвердительного суждения, по Лейбницу, должна выражаться таким правилом: числа, стоящие на диагоналях, должны быть взаимно простыми, т. е. не иметь общих делителей, кроме единицы.
+70,-33 +8,-11
Посылка “Некоторые мудрые богаты” имеет такие числа:
т. е. на обеих диагоналях стоят взаимно простые числа.
И заключение этому правилу также удовлетворяет, ибо на диагоналях стоят взаимно простые числа:
Истинность общеотрицательного суждения “Ни одно S не есть Р” у Лейбница выражалась тем, что по крайней мере на одной диагонали стоят не взаимно простые числа. Истинность частноотрицательного суждения выражалась тем, что по крайней мере одна из характеристик субъекта не делится на соответствующую характеристику предиката.
Чтобы воспользоваться исчислением Лейбница, нужно рассуждение облечь в форму силлогизма и посмотреть, правильный он или неправильный. Однако построенная Лейбницем система удовлетворяла этому требованию только в применении к правильным, по Аристотелю, построенным силлогизмам. Автором в стоящего учебника доказано, что все 19 правильных, по Аристотелю, модусов силлогизма окажутся правильными и по критерию Лейбница. Но в отношении неправильных модусов категорического силлогизма Аристотеля дело обстоит по-иному. Всегда можно построить такой пример, когда при разных правильных набоpax числовых характеристик для посылок получаются разные оценки заключения: в одних случаях оно оказывается истинным, в других - ложным.
Исчисление Лейбница, таким образом, не выдержало проверки, что, конечно, заметил и сам Лейбниц, перешедший в дальнейшем к построению буквенного исчисления по образцу алгебры. Но тоже неудачно.
Однако в этих замыслах Лейбница не все было неверно. Сам по себе метод арифметизации в математической логике играет весьма существенную роль как вспомогательный прием. В нем состоит, например, сущность метода, с помощью которого известный австрийский математик и логик К. Гёдель доказал неосуществимость лейбницевой мечты о создании такой всеобщей характеристики, которая позволит заменить все человеческое мышление вычислениями.
Ложной была именно метафизическая идея Лейбница о сведении всего человеческого мышления к некоторому математическому исчислению. Поэтому были ложны и вытекающие из нее следствия.
Интенсивное развитие математическая логика получила в работах Д. Буля, Э. Шрёдера, С. Джевонса, П. С. Порецкого и других логиков.
Английский логик Джордж Буль (1815-1864) разрабатывал алгебру логики - один из разделов математической логики. Предметом его изучения были классы (как объемы понятий), соотношения между ними и связанные с этим операции. Буль переносит на логику законы и правила алгебраических действий.