Файл: Лекция по логике....docx

Добавлен: 09.02.2019

Просмотров: 8908

Скачиваний: 15

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Покажем это на конкретном примере. Из данных трех посы­лок, имеющих соответственно, формы (1) q , (2) p q и (3) r, требуется вывести все разные (неэквивалентные между собой) формы простых логических следствий. Для решения задачи выполним следующие операции:

1. Соединяем посылки знаками конъюнкции и приводим вы­ражение в КНФ:

(q ) ^ (p q) ^ r = ( ) ^ (p q) ^ r

или в другой записи

pq ^ r.

2. В полученной КНФ к членам 1 и 3 применяем закон выяв­ления, получаем

^ pq ^ r = ^ pq ^

Затем ко второму и четвертому членам снова применяем этот же закон.

402


^ pq ^ r ^ = ^ pq ^ r ^ ^ p

3. Произведем операции “поглощения”. Первый член ( ) поглощается четвертым ( ), поэтому отбрасываем первый член, а второй член (pq) поглощается пятым членом (p). В результате этого получим

^ pq ^ r ^ ^ p =r ^ ^ p

Вывод: при данных посылках суждения r и р истинны, а суж­дение q ложно, т. е. если суждениями выражены некоторые собы­тия, то событие r и событие р наступят, а событие q не наступит.

Исследования Порецкого продолжают оказывать стимулирую­щее влияние на развитие алгебраических теорий и в наши дни.

В XX в. математическая логика развивалась в трудах Ч. С. Пир­са и Дж. Пеано.

Американский логик Чарльз Сандерс Пирс (1839-1914) внес существенный вклад в разработку алгебро-логических концеп­ций и явился основоположником новой науки - семиотики (об­щей теории знаков). В работах Пирса содержится тенденция к расчленению семиотики на прагматику (анализирует отношение знака к его исследователю), семантику (выясняет отношение знака к обозначаемому им объекту) и синтактику (исследует взаимоотношения между знаками).

Пирс пишет о том, что реальное можно определить как не­что, свойства которого независимы от того, что о них мыслят. Наиболее общим подразделением знаков он считал такие: изоб­ражения (icons), индексы (indices) и символы (symbols). Пирс предлагал классификацию знаков и по другим основаниям.

Пирс предложил строить исчисление высказываний лишь на од­ной операции, этим предвосхитив результаты М. X. Шеффера (Шеффер также строил исчисление высказываний на одной операции, которая вошла в историю логики под именем ее создателя - штрих Шеффера). Единственной логической операцией Пирс предлагал считать отрицание нестрогой дизъюнкции.

Пирсу принадлежат работа по логике “Studies in Logic” и другие.


Достижения Джузеппе Пеано (1858-1932), итальянского мате­матика, явились переходным звеном от алгебры логики, в том виде, какой ей придали Буль, Шредер, Порецкий и Пирс, к современ­ной форме математической логики. Основные результаты Пеано были опубликованы в пятитомном “Формуляре математики”'.

Пеано ввел следующие, употребляющиеся и ныне, символы:

а) “ ” - знак принадлежности элемента к классу;

б) “ ” - знак включения одного класса в другой класс;

в) “ ” - знак объединения классов;

г) “ ” - знак для обозначения операции пересечения классов.


Крупным вкладом Пеано в развитие аксиоматического мето­да явилась его система из пяти аксиом для арифметики нату­ральных чисел. На базе своей аксиоматики Пеано строит всю теорию натуральных чисел.

На заключительном этапе своей научной деятельности Пеа­но приступил к систематическому изложению логики как осо­бой. по его мнению, математической дисциплины.

Далее развитие математической логики осуществлялось по мно­гим направлениям, а также в проблемном плане. Это было обу­словлено необходимостью дальнейшего освоения как классиче­ской и неклассической логик, так и возникшими трудностями в обосновании математики.

Краткому освещению основных направлений в современной логике посвящены последующие разделы данной главы.

§ 2. Развитие логики в связи с проблемой обоснования математики

Немецкий математик и логик Готтлоб Фреге (1848-1925) пред­принял попытку свести математику к логике. С этой целью в пер­вой своей работе по математической логике “Исчисление поня­тий” (“Begriffsschrift”) он определил множество как объем понятия и таким образом получил возможность определить и число через объем понятия. Такое определение числа он сформулировал в “Ос­нованиях арифметики” (“Grundlagen der Arithmetik”), книге, которая в то время осталась незамеченной, но впоследствии получи-

____________________

'См.: Peano G. Fonnulaire de Mathematiques. V. 5. Turin, 1895-1905.


ла широкую известность. Здесь Фреге определяет число, прина­длежащее понятию, как объем этого понятия. Два понятия счи­таются равночисленными, если множества, выражающие их объ­емы, можно поставить во взаимооднозначное соответствие друг с другом. Так, например, понятие “вершина треугольника” равно­численно понятию “сторона треугольника”, и каждому из них принадлежит одно и то же число 3, являющееся объемом поня­тия “вершина треугольника”.

Если Лейбниц только наметил программу сведения матема­тики к логике, то Г. Фреге предпринял попытку сведения до­вольно значительной части арифметики к логике, т. е. произвел некоторую математизацию логики'. Символические обозначения, принятые им, очень громоздки, и поэтому мало кто полностью прочитал его “Основные законы арифметики”. Впрочем, и сам Фреге особенно не рассчитывал на это. Тем не менее труд Фреге сыграл значительную роль в истории обоснования математики в первой половине XX в. Об этом своем произведении Фреге писал: “В моих “Основаниях арифметики” (1884) я пытался привести аргументы в пользу того, что арифметика есть часть логики и не должна заимствовать ни у опыта, ни у созерцания никаких основ доказательства. В этой книге (речь идет об “Ос­новных законах арифметики - А. Г.) это должно быть подтвер­ждено тем, что простейшие законы арифметики здесь выводят­ся только с помощью логических средств”2.

Итак, Фреге полагал, что он логически определил число и точно перечислил логические правила, с помощью которых мо­жно определять новые понятия и доказывать теоремы, и что та­ким образом он и сделал арифметику частью логики. Фреге не подозревал, однако, что построенная им система не только не представляла собой логического обоснования содержательной арифметики, но была даже противоречивой. Это противоречие в системе Фреге обнаружил Бертран Рассел.


В послесловии к “Основным законам арифметики” Фреге пи­сал по этому поводу: “Вряд ли есть что-нибудь более нежела­тельное для автора научного произведения, чем обнаружение по


______________________

'См.: Frege G. Grundgesetze der Arithmetik. V. I. Jena, 1893. V. II. 1903.

2Ibid.V. 1. 1893. S. 1.


завершении его работы, что одна из основ его здания оказывает­ся пошатнувшейся. В такое положение я попал, получив письмо от господина Бертрана Рассела, когда печатание этой книги бли­зилось к концу”'. Противоречием, который обнаружил Рассел в системе Фреге, был знаменитый парадокс Рассела о множестве всех нормальных множеств (см. с. 226-227 учебника).

Причину своей неудачи Фреге видел в использованном им предположении, что у всякого понятия есть объем в смысле по­стоянного, строго фиксированного множества, не содержащего в себе никакой неопределенности или расплывчатости. Ведь именно через этот объем он и определил основное понятие мате­матики - понятие числа.

Вслед за Г. Фреге очередную попытку сведения математики к логике предпринял видный английский философ и логик Бер­тран Рассел (1872-1970). Он также автор ряда работ из областей истории, литературы, педагогики, эстетики, естествознания, со­циологии и др. Труды Рассела по математической логике оказа­ли большое влияние на ее развитие. Вместе с английским логи­ком и математиком А. Уайтхедом2 Рассел разработал оригиналь­ную систему символической логики в фундаментальном трех­томном труде “Principia Mathematica3. Выдвигая идею сведения математики к логике, Рассел считает, что если гипотеза относит­ся не к одной или нескольким частным вещам, но к любому пред­мету, то такие выводы составляют математику. Таким образом, он определяет математику как доктрину, в которой мы никогда не знаем ни того, о чем мы говорим, ни того, верно ли то, что мы говорим.

Рассел делит математику на чистую и прикладную. Чистая математика, по его мнению, есть совокупность формальных выводов, независимых от какого бы то ни было содержания, т. е. это класс высказываний, которые выражены исключительно в терминах переменных и только логических констант. Рассел не только вполне уверен в том, что ему удалось свести математику к такого рода предложениям, но делает из этого утверждения

_______________________


'ibid. V. II S. 253.

2См.: УайтхедА. Н. Избранные работы по философии//Пер. с англ. М., 1990.

3См.: RusselB.. and WhiteheadA. N. Principia Mathematica. London, 1910-1913.


вывод о существовании априорного знания, считает, что “мате­матическое познание нуждается в посылках, которые не базиро­вались бы на данных чувства”'.

От чистой математики Рассел отличает прикладную математи­ку, которая состоит в применении формальных выводов к матери­альным данным.

Для того чтобы показать, что чистая математика сводится к логике, Рассел берет систему аксиом арифметики, сформулиро­ванную Пеано, и пытается их логически доказать, а три неопре­деляемые у Пеано понятия: “нуль”, “число”, “следующее за” - определить в терминах своей логической системы. Все натураль­ные числа Рассел также считает возможным выразить в терми­нах логики, а следовательно, свести арифметику к логике. А так как, по его мнению, вся чистая математика может быть сведена к арифметике, то математика может быть сведена к логике. Рас­сел пишет: “Логика стала математической, математика логичес­кой. Вследствие этого сегодня совершенно невозможно провес­ти границу между ними. В сущности это одно и то же. Они различаются, как мальчик и мужчина; логика - это юность мате­матики, а математика - это зрелость логики”2. Рассел считает, что не существует пункта, где можно было бы провести резкую границу, по одну сторону которой находилась бы логика, а по другую - математика.


Но в действительности математика несводима к логике. Предметы изучения этих наук различны. Нами ранее были ука­заны характерные черты, присущие логике как науке (см. с.141-142). У математики другие задачи и функции.

В большом труде “Principia Mathematica” есть две стороны. Первая - заставляющая видеть в нем один из основных истоков современной математической логики. Все, что связано с этой сто­роной Principia Mathematica, получило в дальнейшем такое раз­витие в математической логике, которое сделало эту новую об­ласть науки особенно важной для решения не только труднейших

____________________

'Russel B. The Philosophical Importance of Mathematical Logik. // “Monist”. V. XXIII. 1913. № 4. P. 489.

2Russel B. Introduction to Mathematical Philosophy. London, 1924. P. 194.


задач теоретической математики и ее обоснования, но и целого ряда весьма важных для практики задач вычислительной матема­тики и техники.

Другая сторона этого произведения - точнее, даже не самого этого произведения, а философских “обобщений”, делаемых логицистами со ссылкой на него, - принадлежит уже к области по­пыток использовать его для “доказательства” положения, что математика-де сводится к логике. Именно эта сторона сомнительна, и ее опровергает дальнейшее развитие науки, которое обнаружи­ло, что попытка Рассела безуспешна. И это не случайно. Дело не в том, что Рассел в каком-то смысле не совсем удачно построил свою систему. Дело в том, что вообще нельзя построить формаль­ную “логическую систему” с точно перечисленными и эффективно выполнимыми правилами вывода, в которой можно было бы фор­мализовать всю содержательную арифметику. Это обстоятельство представляет собой содержание известной теоремы австрийского математика и логика К. Гёделя о неполноте формализованной арифметики', из которой следует непосредственно, что определе­ние математических понятий в терминах логики хотя и обнару­живает некоторые их связи с логикой, тем не менее не лишает их специфически математического содержания. Формализованная система имеет смысл лишь при наличии содержательной науч­ной теории, систематизацией которой данная формализованная система должна служить.

Однако Г. Фреге и Б. Рассел в своем логическом анализе при­шли к ряду интересных результатов, относящихся к понятиям “предмет”, “имя”, “значение”, “смысл”, “функция”, “отношение” и др. Особо следует подчеркнуть значение разработанной Рассе­лом теории типов (простой и разветвленной), цель которой состо­ит в том, чтобы помочь разрешить парадоксы в теории множеств. Рациональное зерно разветвленной теории Рассела состоит в том, что она является конструктивной теорией.


_____________________

Godel К. Ober formal unentscheidbare Satze der Principia Mathematica und verwandter Systeme // Preussische Akademie der Wissenschaften. Sitzungsberichte der Preussische Academic der Wssenschaft. Vol. 38. Berlin, 1930.


***

Одним из оснований деления логики служит различие приме­няемых в ней принципов, на которых базируются исследования. В результате такого деления имеем классическую логику и неклассические логики. В. С. Меськов выделяет такие осново­полагающие принципы классической логики:


“1) область исследования составляют обыденные рассужде­ния, рассуждения в классических науках;

2) допущение о разрешимости любой проблемы;

3) отвлечение от содержания высказываний и от связей по смыслу между ними;

4) абстракция двузначности высказываний”'. , Неклассические логики отступают от этих принципов. К ним относятся интуиционистская логика, конструктивные логики, многозначные, модальные, положительные, паранепротиворечи-вые и другие логики, к изложению которых мы переходим.

§ 3. Интуиционистская логика

Интуиционистская логика построена в связи с развитием ин­туиционистской математики. Интуиционистская школа основа­на в 1907 г. голландским математиком и логиком Л. Брауэром (1881-1966)2, но некоторые ее идеи выдвигались и ранее.

Интуиционизм - философское направление в математике и логике, отказывающееся от использования абстракции актуаль­ной бесконечности, отвергающее логику как науку, предшест­вующую математике, и рассматривающее интуитивную ясность и убедительность (“интуицию”) как последнюю основу матема­тики и логики. Интуиционисты свою интуиционистскую мате­матику строят с помощью финитных (конечных) средств на ос­нове системы натуральных чисел, которая считается известной из интуиции. Интуиционизм включает в себя две стороны - фи­лософскую и математическую.


_______________________

'Меськов В. С. Очерки по логике квантовой механики. М., 1986. С. 9.

2Brouwer L. E. J. Intuitionism and Formalism // Bulletin of American Math­ematical Society. 1913. Vol. 20. The Effect of Intuitionism on Classical Algebra of Logic // Proceedings of the Royal Irish Academy. 1955. Vol. 57. P. 113-116.


Математическое содержание интуиционизма изложено в ряде работ математиков. Ведущие представители отечественной шко­лы конструктивной математики отмечают положительное зна­чение некоторых математических идей интуиционистов.

В целом конструктивная математика существенно отличает­ся от интуиционистской, но, как указывал советский математик-конструктивист А. А. Марков, конструктивное направление име­ет точки соприкосновения с интуиционистской математикой. Конструктивисты сходятся с интуиционистами в понимании дизъюнкции и в силу этого признают правильной данную Брауэром критику закона исключенного третьего. Вместе с тем кон­структивисты считают неприемлемыми методологические ос­новы интуиционизма.

Если математический аспект интуиционизма имеет рациональ­ный смысл (в этой связи предпочтительнее говорить об интуицио­нистской математике или интуиционистской логике, а не об ин­туиционизме), то второй его аспект - философско-методологический - совершенно неприемлем.

Брауэр считал, что чистая математика представляет собой сво­бодное творение разума и не имеет никакого отношения к опыт­ным фактам. У интуиционистов единственным источником ма­тематики оказывается интуиция, а критерием приемлемости математических понятий и выводов является “интуитивная яс­ность”. Но интуиционист Гейтинг вынужден был признаться в том, что понятие интуитивной ясности в математике само не является интуитивно ясным; можно даже построить нисходящую шкалу степеней очевидности.