Файл: 11 Общие сведения о комплексных соединениях 11 Состав комплексных соединений.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 11.01.2024

Просмотров: 65

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

11 Общие сведения о комплексных соединениях

11.1. Состав комплексных соединений

11.2. Номенклатура комплексных соединений В формуле комплекса на первое место обычно ставят комплексообразователь; за ним по порядку следуют лиганды — положительно заряженные, нейтральные и отрицательно заряженные; например, [Pt(NH3)2Cl2]. Лиганды, имеющие одинаковый заряд, располагают слева направо в порядке возрастания электроотрицательности их первых элементов, например [Co(C5H5N)2(NH3)4]Cl3, или по алфавиту.Названия отрицательно заряженных лигандов состоят из полного названия (или его корня) соответствующего аниона и окончания «-о», например I– — иодо, Н– — гидридо, СО32− — карбонато. Анионы углеводородов в качестве лигандов чаще всего называют так же, как соответствующие углеводородные радикалы, например C H5 5− — циклопентадиенил. Нейтральные лиганды называют так же, как соответствующие молекулы (без дополнительных приставок и окончаний); например, N2H4 — гидразин, С2Н4 — этилен, C5H5N — пиридин. Для некоторых нейтральных и отрицательно заряженных лигандов используют специальные названия: Н2О — аква, NH3 — аммин, СО — карбонил, NO — нитрозил, S2– — тио. Названия большинства положительно заряженных лигандов имеют окончание «-ий»: N H2 5+ — гидразиний. Катионы водорода H обозначают словом «гидро».Количество одинаковых лигандов в комплексе указывают числовыми приставками, которые пишутся слитно с названиями лигандов, например Na2[Zn(OH)4] — тетрагидроксоцинкат натрия. Если использование приставок ди-, три-, тетра-, пента- и т. д. не отражает однозначно формулу соединения или если название лиганда уже содержит числовые приставки, применяют умножающие числовые приставки: бис-, трис-, тетракис-, пентакис- и другие, а название лиганда заключают в скобки: [Fe(C5H5)2] — бис(циклопентадиенил)железо.Название нейтрального комплекса состоит из одного слова: сначала название лиганда (лигандов) с приставкой, обозначающей число лигандов, далее русское название комплексообразователя в именительном падеже (для многоядерных комплексов также с числовой приставкой): [Ni(CO)4] — тетракарбонилникель, [Al2Cl6] — гексахлородиалюминий. Название комплексного катиона составляют по тем же правилам, но дополнительно указывают степень окисления комплексообразователя, а название комплекса ставят в родительном падеже: [Ag(NH3)2]Cl — хлорид диамминсеребра(I). В названии комплексного аниона используют латинский корень названия элемента и добавляют суффикс «-ат»: Na[Ag(CN)2] — дицианоаргентат(I) натрия. Степень окисления комплексообразователя (если элемент проявляет в соединениях несколько степеней окисления) указывают римской цифрой в скобках после названия элемента. Если степень окисления комплексообразователя неизвестна, указывают заряд всего иона (арабской цифрой в скобках), например [Nb6Cl12] — катион додекахлорогексаниобия(1+).Мостиковые лиганды обозначают греческой μ («мю») перед названием мостикового лиганда каждого вида. При перечислении лигандов в названии комплекса сначала называют все мостиковые (в порядке их усложнения), затем все немостиковые, а после этого — комплексообразователи с указанием их числа. Если в комплексе имеются одинаковые фрагменты, это также может быть отражено в названии. Например, комплексное соединение [(NH3)5Co(μ-NH2)Co(NH3)5]Cl5 можно назвать пентахлорид (μ-амидо)декаамминдикобальта(III) или хлорид (μ-амидо)бис{пентаамминкобальта(III)}. Вопросы 11.4. Назовите следующие комплексы: а) [Co(CO)4]; б) [Fe(C5H5)2]; в) [Cu(H2O)4]2; г) [Zn(OH)4]2–; д) [Cr(H2O)5OH]2. 11.5. Напишите формулы следующих комплексных соединений: а) тетрафтороборат калия; б) тетрагидридоборат алюминия; в) хлорид диамм инсеребра(I); г) дицианоаргентат(I) натрия.11.3. Классификация комплексных соединений Многообразие комплексных соединений не позволяет создать единую классификацию. Наиболее простая классификация — по заряду комплекса (нейтральные, анионные и катионные комплексы). Поскольку в водном растворе ионные связи легко разрываются и комплексные соединения необратимо диссоциируют (распадаются на отдельные внутри- и внешнесферные ионы), можно выделить комплексные кислоты, основания и соли. При классификации по типу лигандов все комплексы можно разделить на соединения с неорганическими и органическими лигандами, а далее рассматривать по отдельности комплексы с каждым типом лигандов. 11.3.1. Комплексы с неорганическими лигандами Аквакомплексы содержат в качестве лигандов молекулы воды. Такие комплексы существуют в водных растворах и во многих кристаллогидратах. Так, при растворении в воде белого сульфата меди CuSO4 образуется голубой раствор, поскольку в воде сразу образуется комплексный катион тетрааквамеди(II) [Cu(H2O)4]2. При выпаривании этого раствора кристаллизуется голубой пентагидрат сульфата меди CuSO4 ⋅ 5H2O (медный купорос), который содержит аквакатионы меди [Cu(H2O)4]2. При прокаливании пентагидрита CuSO4 ⋅ 5H2O он постепенно теряет воду и при 200 °С снова превращается в белый безводный сульфат меди CuSO4.В растворе аквакомплексы могут вступать в реакцию протолиза; большинство аквакомплексов — слабые кислоты (т. е. они отщепляют H, который, присоединяясь к несвязанным молекулам воды, образует катионы, прежде всего H3O), например:[Cr(H2O)6]3 + H2O  H3O + [Cr(H2O)5OH]2Вслед за первым протоном комплексный катион может потерять и следующие протоны, однако по мере отщепления протонов из внутренней сферы кислотные свойства комплекса резко ослабевают. Чем выше степень окисления комплексообразователя, тем сильнее кислотные свойства его аквакомплекса. Например, катион гексаакважелеза(II) [Fe(H2O)6]2 проявляет очень слабые кислотные свойства, а катион гексаакважелеза(III) [Fe(H2O)6]3 — сильная кислота, даже сильнее уксусной и ортофосфорной кислот.В гидроксокомплексах лигандами служат гидроксид-ионы. В растворе гидроксокомплексы обычно бывают устойчивы только в присутствии избытка гидроксид-ионов. При разбавлении раствора гидроксокомплексы легко разрушаются, отщепляя гидроксид-ионы:[Zn(OH)4]2– + H2O  [Zn(H2O)(OH)3]– + OH– [Zn(H2O)(OH)3]– + H2O  [Zn(H2O)2(OH)2]↓ + OH– Известны и более устойчивые гидроксокомплексы, например хорошо растворимые в воде Na2[Sn(OH)6] и Na2[Pb(OH)6], малорастворимые Na[Sb(OH)6] и Ag2[Pt(OH)6]. Гидроксокомплексы легко разрушить действием любых кислот (даже самых слабых), например водным раствором диоксида углерода CO2:[Pb(OH)4]2– + 4H3O = Pb2 + 8H2O[Al(OH)4]– + 3CO2 = Al(OH)3↓ + 3HCO3−Химия растворов гидроксокомплексов очень сложная. Так, в водном раств оре гидроксокомплекса алюминия можно обнаружить ионы: [Al(OH)4]–, [Al(H2O)2(OH)4]–, [Al(H2O)4(OH)2], [Al2(H2O)8(OH)2]4 и многие другие. В многоядерных гидроксокомплексах алюминия и некоторых других металлов комплексообразователи могут быть связаны через мостиковые гидроксолиганды.Аммины — соединения в составе внутренней сферы которых сожержатся молекулы аммиака; аммиакаты часто содержат не только внутри-, но и внешнесферные молекулы аммиака. У многих переходных элементов аммины более устойчивы, чем аквакомплексы, и легко образуются в водном растворе.[Cu(H2O)4]2 + 4NH3 = [Cu(NH3)4]2 + 4H2OЧасто сначала осаждается малорастворимый гидроксид или осно[вная соль, которая затем переходит в растворимый аммиакат: 2NH3 ⋅ H2O + SO = Cu2(SO4)(OH)2↓ + 2NH Cu2(SO4)(OH)2 + 6NH3 ⋅ H2O + 2NH = 2[Cu(NH3) SO Аммиачные комплексы разрушаются при нагревании, а также под действием кислот, вызывающих протонирование лиганда, например:[Cu(NH3)4]2 + 4H3O = Cu2 + 4NH + 4H2OАцидокомплексы содержат в качестве лигандов анионы кислот. Это самый многочисленный класс комплексов с неорганическими лигандами. Многие элементы образуют комплексы с галогенид-ионами:B(OH)3 + 4KF = 3KOH + K[BF4]CuCl + Cl– = [CuCl2]–В зависимости от числа анионных лигандов во внутренней сфере ацидокомплексы могут иметь разную окраску, например бромокомплексы меди: светло-зеленый [Cu(H2O)3Br], темно-зеленый [Cu(H2O)2Br2], коричневый [Cu(H2O)Br3]–, темно-вишневый [CuBr4]2–.Один и тот же лиганд, например тиоцианат-ион NCS–, с разными металлами также образует комплексы разного цвета: синий тетракис(тио циа нато)кобальтат(II) [Co(NCS)4]2–, зеленоватый тетракис(тиоцианато)феррат(II) [Fe(NCS)4]2–; красные [Fe(H2O)x(NCS)6–x]x–3 (самый устойчивый из акватиоцитатных комплексов железа — трис(тиоцианато)триакважелезо [Fe(H2O)3(NCS)3]).Очень прочные комплексы образует с металлами цианид-ион CN– (кислотный остаток циановодородной кислоты HCN). При этом окраска комплекса может изменяться в зависимости от степени окисления комплек со образователя: например, жёлтая кровяная соль K4[Fe(CN)6] ⋅ 3H2O (триг ид рат гексацианоферрата(II) калия) и красная кровяная соль K3[Fe(CN)6] (гексацианоферрат(III) калия).Разрушение ацидокомплексов обычно происходит в результате обмена лигандов[Fe(NCS)6]3– + 4F– + 2H2O = [Fe(H2O)2F4]– + 6NCS–или связывания комплексообразователя[HgI4]2– + S2– = HgS↓ + 4I–Особую группу комплексов составляют анионгалогенаты, в которых галогены одновременно выполняют функцию и лигандов, и комплексообразователей. Степень окисления комплексообразователя может быть положительная — [IIIICl4]–, нулевая — [(I2)0(I3)2]2– или отрицательная — [I–I(I2)2]–. Изополигалогенаты построены из атомов одного элемента (обычно иода), гетерополигалогенаты — из атомов разных элементов (при этом комплексообразователем всегда служит менее электроотрицательный галоген).Способы получения анионгалогенатных комплексов достаточно разнообразны.KI + I2 = K[I(I)2]CsCl + IBr = Cs[I(Br)(Cl)] 2RbCl + I2Cl6 = 2Rb[ICl4]KI + 2Cl2 = K[ICl4]Все анионгалогенаты легко разрушаются при нагревании:Rb[IBr2](т) = RbBr(т) + IBr(г)K[I(I)2](т) = KI(т) + I2(г)Гидридокомплексы, содержащие анион водорода Н–, обычно образуют элементы группы IIIA (группа 13 в длиннопериодной таблице). Наиболее устойчивы гидридокомплексы бора и алюминия. Эти соединения — сильные восстановители; они реагируют с водой с выделением водорода:Al[BH4]3 + 12H2O = Al(OH)3 + 3B(OH)3 + 12H2Комплексные соединения, в которых лигандами служат молекулы монооксида углерода CO, называются карбонилами. Эти комплексы обычно содержат металл в нулевой или даже отрицательной степени окисления (например, [Cr(CO)6], [Mn(CO)5]–). Стехиометрия карбонилов подчиняется правилу эффективного атомного номера (так называемому правилу Сиджвика3):Суммарное количество электронов атома или иона металла и электронов, предоставленных ему лигандами, равно числу электронов в атоме ближайшего благородного (инертного) газа.Наиболее устойчивы комплексы, в которых реализуется 18-электронная оболочка из s-, p- и d-электронов комплексообразователя и электронных пар лигандов. При этом d-элементы с четным числом валентных электронов образуют одноядерные карбонилы, а с нечетным — двухъядерные (со связью металл—металл). Карбонилы обычно термически неустойчивы, поэтому их образование используют как промежуточный этап при получении особо чистых металлов, например:Ni + 4CO = [Ni(CO)4] (1 атм, 60–80 °С или 100–200 атм, 200–250 °С)[Ni(CO)4] = Ni + 4CO (1 атм,

11.4. Химическая связь в комплексных соединениях

Вопросы 11.10. Перечислите достоинства и недостатки метода валентных связей (ВС) (применительно к комплексным соединениям).11.11. Определите диамагнитные и парамагнитные комплексы: а) [Co(NH3)6]3; б) [TiF6]3–; в) [TiCl6]2–; г) [CuCl5]3–; д) [Cu(OH)6]4–; е) [V(H2O)6]3; ж) [VCl4]–; з) [VF6]–; и) [Cu(CN)4]2–.11.4.2. Теория кристаллического поля Для предсказания строения комплексных соединений d-элементов хорошим дополнением к методу валентных связей оказалась теория кристаллического поля (КП). Основы этой теории были разработаны Бете в 1929 г. при рассмотрении эффекта замещения катиона натрия в решетке ионного кристалла типа NaCl. Бете показал, что при помещении свободного иона в электростатическое поле (так называемое кристаллическое поле), существующее в кристалле, происходит полное или частичное снятие вырождения энергетических подуровней иона, т. е. их расщепление.Согласно теории кристаллического поля, вокруг положительно заряженного центрального иона упорядоченно располагаются точечные лиганды, которые заряжены отрицательно. Число этих точечных отрицательных зарядов определяет симметрию системы (комплекса). Реальный объем лигандов, а также их геометрическое и электронное строение во внимание не принимаются. Взаимодействие центрального атома с лигандами рассматривается с позиций квантовой механики. Энергия свободного (несвязанного) иона определяется кинетической энергией системы, энергией взаимодействия электрона с ядром, а также энергией межэлектронного и спин-орбитального взаимодействия6. При помещении иона в кристаллическое поле той или иной геометрии, которая зависит от симметрии системы в целом, на энергию системы дополнительно влияет потенциал V кристаллического поля. В теории кристаллического поля чаще рассматривают поля октаэдрической и тетраэдрической симметрии.В поле сферической симметрии все орбитали d-подуровня свободных ионов переходных металлов вырождены (имеют одинаковую энергию). В электростатическом поле более низкой симметрии d-орбитали неэквивалентны по энергии (происходит расщепление подуровней, т. е. частичное снятие вырождения энергии). Расщепление подуровней в поле октаэдрической симметрии показано на рис. 11.10. Атомные dJ-орбитали (dx2−y2 и dz2 ) симметрии eg ближе всего подходят к орбиталям лигандов и подвер- Рис. 11.10. Расщепление d-подуровня в кристаллическом поле октаэдрической симметрии гаются наиболее сильному воздействию их электростатического поля. Возникновение сил отталкивания приводит к увеличению энергии egорбиталей (они дестабилизируются). Три другие d-АО (dху, dxz, dyz) симметрии t2g, называемые dH, располагаются между орбиталями лигандов, поэтому их энергия понижается (орбитали стабилизируются).Разность энергий eg- и t2g-состояний часто обозначают7 как 10Dq. Dq — это радиальный интеграл, который зависит от эффективного заряда и порядкового номера центрального иона Mn+, а также от расстояния металл—лиганд. В спектроскопии неорганических соединений величину Dq обычно называют основным параметром расщепления электронных конфигураций.Характер расщепления определяется симметрией кристаллического поля и числом d-электронов иона переходного металла. Большое значение имеет также тип кристаллического поля, который зависит от природы лигандов. Чем сильнее поле лигандов, тем больше энергия расщепления. Обычно рассматривают два крайних случая — слабое и сильное кристаллические поля.В слабом поле потенциал межэлектронного взаимодействия существенно больше потенциала кристаллического поля и, тем более, потенциала спин-орбитального взаимодействия. Координационные соединения с лигандами, создающими слабые кристаллические поля, называют высокоспиновыми (в методе ВС такие соединения называют спин-свободными (внешнеорбитальными) или ионными комплексами).В сильном поле потенциал V заметно превышает потенциалы межэлектронного и спин-орбитального взаимодействий и поэтому подавляет их. Координационные соединения с лигандами, создающими сильные кристаллические поля, называют низкоспиновыми (в методе ВС им соответствуют спин-связанные (внутриорбитальные) или ковалентные комплексы).В зависимости от силы поля лигандов заселение орбиталей электронами происходит по-разному. В слабом поле, в соответствии с правилом Хунда, сначала (t2g- и eg-орбитали) последовательно заселяются одним электроном, и лишь после этого начинается заселение вторыми электронами наиболее низких по энергии t2g-орбиталей (рис. 11.11). В сильном поле прежде всего полностью заселяются t2g-орбитали, а уже потом eg-орбитали. Рис. 11.11. Заселение орбиталей электронами в сильном (а) и слабом (б) тетраэдрических кристаллических полях на примере d 5- и d 6-конфигурацийСоответствующие энергетические состояния характеризуют через заселенности t2g- и еg-орбиталей (например, t e25g g0).При eg–t2g-расщеплении энергия eg-орбиталей (и их электронов) повышается на 6Dq, а энергия t2g-орбиталей понижается на 4Dq. В итоге энергия системы в целом уменьшается; этот энергетический выигрыш называют энергией стабилизации кристаллическим полем8 (ЭСКП, обозначается δ). Величина ЭСКП зависит от числа электронов на eg- и t2gорбиталях и во многом определяет главные свойства комплексного соединения.Для октаэдрического поля ЭСКП (δ) рассчитывается по формуле:δ = n(4Dq) – m(6Dq)где n — число электронов на t2g-подуровне, m — число электронов на egподуровне. Например, ЭСКП для конфигурации t e23g g0:δ = (4Dq) ⋅ 3 = 12Dqа для конфигурации t e23g g2:δ = (4Dq) ⋅ 3 – (6Dq) ⋅ 2 = 0В случае сильного поля расчет аналогичен, однако необходимо учитывать иной порядок заполнения орбиталей, например для ЭСКП конфигу-рации t e25g g0:δ = (4Dq) ⋅ 5 = 20Dq Таблица 11.2 Значения ЭСКП (Dq) для разных октаэдрических комплексов


Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

11 Общие сведения о комплексных соединениях

11.1. Состав комплексных соединений


Многие «простые» соединения (оксиды, гидроксиды, соли и т. д.) могут «объединяться» с другими соединениями в более сложные вещества. Так, молекулы воды, аммиака и монооксида углерода, гидроксид-ионы и другие анионы могут взаимодействовать с катионами металлов или другими частицами, образуя комплексные (координационные) молекулы или ионы (их также часто называют просто комплексами). Термин «комплексные соединения» ввел немецкий химик Оствальд; в русскоязычной литературе его впервые употребил Кистяковский1, который после окончания Петербургского университета работал в лаборатории Оствальда.

Реакции получения комплексных соединений похожи на реакции образования «простых» соединений, например:

SO3 + K2O = K2SO4 (простая соль)

Zn(OH)2 + 2KOH = K2[Zn(OH)4] (комплексная соль)

Первым синтезом комплексного соединения принято считать получение в 1798 г. кристаллов хлорида гексаамминкобальта(III) [Co(NH3)6]Cl3. Химики в то время еще ничего не знали о строении полученного вещества и описали его состав привычной формулой CoCl3 ⋅ 6NH3.

Лишь спустя столетие швейцарский химик Вернер2 разработал координационную теорию строения комплексных соединений, которая используется до сих пор. В составе комплексов Вернер выделил две координационные сферы: внутреннюю и внешнюю. Во внутренней сфере находятся частицы, связанные между собой ковалентными связями. При записи химической формулы внутреннюю сферу комплекса заключают в квадратные скобки. Это может быть нейтральная частица, например [Cr(CO)6], анион, например K4[Fe(CN)6], или катион, например [Ni(NH3)6]Cl2. Ионы внешней сферы связаны с внутренней ионными связями. Соединение может также состоять из двух комплексных ионов (катиона и аниона), например [Cu(NH3)4][PtCl6]. В этом случае каждый из ионов считают внешнесферным по отношению к другому.

11.1. Состав комплексных соединений

Соединения, которые содержат комплексный ион, в водном растворе необратимо диссоциируют на внутри- и внешнесферные ионы, например:


[Pt(NH3)4]Cl2 = [Pt(NH3)4]2 + 2Cl

Если в составе внешней сферы присутствуют катионы водорода или гидроксид-ионы, среда (раствор) становится кислой или щелочной:

[Zn(NH3)4](OH)2 = [Zn(NH3)4]2 + 2OH

H[BF4] + H2O = [BF4] + H3O

В каждом комплексе независимо от его заряда содержится частица (атом, ион или молекула), которая координирует (располагает) вокруг себя другие ионы или молекулы. Такую частицу называют комплексообразователем.

Часто комплексообразователем служит катион, например ион железа(II) в комплексе [Fe(CN)6]4–. Нередко комплексообразователь не имеет заряда, например атом хрома в [Cr(CO)6] или молекула иода в [I2(I3)2]2–. Комплексообразователями могут быть также анионы (в том числе анионы металлов), например [Mn(CO)5]. Часто частицу-комплексообразователь (атом или одноатомный ион) называют центральным атомом.

Частицы, которые располагаются вокруг комплексообразователя, назвали лигандами (от лат. ligare — связывать) или аддендами (от лат. addendum — дополнение, приложение). Лигандами могут быть нейтральные молекулы (например, CO), катионы (часто H) или анионы (гидроксид-ион OH, кислотные остатки неорганических и органических кислот). В качестве лигандов могут выступать и сложные органические молекулы.

В одном комплексе может быть несколько разных лигандов.

Число связей комплексообразователя с лигандами называют его координационным числом (КЧ). Известны комплексные соединения с числом связей от 2 до 12; чаще же КЧ = 6 или 4, другие координационные числа встречаются реже.

Координационное число комплексообразователя не всегда совпадает с числом лигандов, так как у одного лиганда может быть несколько связей с комплексообразователем. Например, в молекуле [Zn(NH2CH2COO)2] число лигандов 2, но координационное число цинка 4 (рис. 11.1). Количество связей, которое может образовать лиганд, называется его дентатностью (от лат. dente — зуб). Большинство лигандов может образовать с комплексообразователем только одну связь; такие лиганды называют монодентатными. Приведенный на рис. 11.1 глицинат-ион NH2CH2COO



Рис. 11.1. Структурная формула комплекса [Zn(NH2CH2COO)2]

образует связи через атом кислорода и атом азота

; это бидентатный лиганд, поэтому в комплексе [Zn(NH2CH2COO)2] число лигандов вдвое меньше, чем координационное число комплексообразователя. Бывают и другие полидентатные лиганды: три-, тетра-, гексадентатные.

Когда полидентатный лиганд образует несколько связей с комплексообразователем, чаще всего формируются замкнутые циклы. Эти циклы называют хелатными, а комплексы, которые их содержат, — хелатами (от греч. хеле — клешня). Наибольшей устойчивостью обладают пятичленные хелатные циклы; чуть менее устойчивы шестичленные хелаты. Остальные циклы заметно уступают им по прочности.

Некоторые лиганды могут образовывать связи (координироваться) через разные атомы. Например, тиоцианат-ион NCS в одних комплексах координируется через атом азота, а в других — через атом серы. Нитритион NO2 может связываться как через атом азота, так и через атом кислорода. Такие лиганды называют амбидентатными.

Полидентатный лиганд может образовать связи одновременно с разными комплексообразователями. При этом соединять атомы комплексообразователей могут и такие лиганды, которые не способны образовывать хелаты, например галогенид- или гидроксид-ионы. Лиганды, соединяющие несколько комплексообразователей, называют мостиковыми.

Комплекс, который содержит один центральный атом (одно «ядро»), называют одноядерным (моноядерным). Если во внутренней сфере комплексного соединения находится несколько комплексообразователей, окруженных лигандами, говорят, что комплекс — многоядерный (полиядерный). Например, димер хлорида алюминия Al2Cl6 можно считать биядерным комплексом, в котором два мостиковых атома хлора соединяют ковалентными связями два атома алюминия (рис. 11.2). Остальные атомы хлора, также образующие ковалентные связи с атомами алюминия, называются концевыми.



Полиядерные комплексы с несколькими комплексообразователями во внутренней сфере могут возникнуть также в результате связывания атомов комплексообразователя; связь между этими атомами может быть одинарной, как в [(CO)5Mn—Mn(CO)5], двойной, тройной и даже четверной. Соединения, содержащие связи металл—металл, назвали кластерами (от англ.cluster — кисть, гроздь).

11.2. Номенклатура комплексных соединений



Рис. 11.3.
Структурная формула [Co2(CO)8] с мостиковыми лигандами CO

Встречаются также смешанные комплексы, содержащие одновременно и мостиковые лиганды, и связи металл—металл (рис. 11.3).

Вопросы


11.1. Какова формула соединения с комплексообразователем СоIII (КЧ = 6), при котором лиганды — хлорид-ионы и две молекулы аммиака, а во внешней сфере — катионы калия?

11.2. Назовите составные части комплексного соединения K3[Fe(CN)6]; укажите координационное число центрального атома, определите заряды комплексообразователя и комплексного иона в целом.

11.3. Определите внешнюю и внутреннюю сферу следующих комплексных соединений, их общий заряд и заряд их центрального атома: а) K2[PtCl6]; б) [Cu(NH3)4]SO4; в) K3[FeF6]; г) [Сr(H2O)6]Cl3.

11.2. Номенклатура комплексных соединений


В формуле комплекса на первое место обычно ставят комплексообразователь; за ним по порядку следуют лиганды — положительно заряженные, нейтральные и отрицательно заряженные; например, [Pt(NH3)2Cl2]. Лиганды, имеющие одинаковый заряд, располагают слева направо в порядке возрастания электроотрицательности их первых элементов, например

[Co(C5H5N)2(NH3)4]Cl3, или по алфавиту.

Названия отрицательно заряженных лигандов состоят из полного названия (или его корня) соответствующего аниона и окончания «-о», например I — иодо, Н — гидридо, СО32 — карбонато. Анионы углеводородов в качестве лигандов чаще всего называют так же, как соответствующие углеводородные радикалы, например C H5 5 — циклопентадиенил. Нейтральные лиганды называют так же, как соответствующие молекулы (без дополнительных приставок и окончаний); например, N2H4 — гидразин, С2Н4 — этилен, C5H5N — пиридин. Для некоторых нейтральных и отрицательно заряженных лигандов используют специальные названия: Н2О — аква, NH3 — аммин, СО — карбонил, NO — нитрозил, S2– — тио. Названия большинства положительно заряженных лигандов имеют окончание

«-ий»: N H2 5+ — гидразиний. Катионы водорода H обозначают словом

«гидро».

Количество одинаковых лигандов в комплексе указывают числовыми приставками, которые пишутся слитно с названиями лигандов, например Na2[Zn(OH)4] — тетрагидроксоцинкат натрия. Если использование приставок ди-, три-, тетра-, пента- и т. д. не отражает однозначно формулу соединения или если название лиганда уже содержит числовые приставки, применяют умножающие числовые приставки: бис-, трис-, тетракис-, пентакис- и другие, а название лиганда заключают в скобки: [Fe(C5H5)2] — бис(циклопентадиенил)железо.

Название нейтрального комплекса состоит из одного слова: сначала название лиганда (лигандов) с приставкой, обозначающей число лигандов, далее русское название комплексообразователя в именительном падеже (для многоядерных комплексов также с числовой приставкой): [Ni(CO)4] — тетракарбонилникель, [Al2Cl6] — гексахлородиалюминий. Название комплексного катиона составляют по тем же правилам, но дополнительно указывают степень окисления комплексообразователя, а название комплекса ставят в родительном падеже: [Ag(NH3)2]Cl — хлорид диамминсеребра(I). В названии комплексного аниона используют латинский корень названия элемента и добавляют суффикс «-ат»: Na[Ag(CN)2] — дицианоаргентат(I) натрия. Степень окисления комплексообразователя (если элемент проявляет в соединениях несколько степеней окисления) указывают римской цифрой в скобках после названия элемента. Если степень окисления комплексообразователя неизвестна, указывают заряд всего иона (арабской цифрой в скобках), например [Nb6Cl12] — катион додекахлорогексаниобия(1+).

Мостиковые лиганды обозначают греческой μ («мю») перед названием мостикового лиганда каждого вида. При перечислении лигандов в названии комплекса сначала называют все мостиковые (в порядке их усложнения), затем все немостиковые, а после этого — комплексообразователи с указанием их числа. Если в комплексе имеются одинаковые фрагменты, это также может быть отражено в названии. Например, комплексное соединение [(NH3)5Co(μ-NH2)Co(NH3)5]Cl5 можно назвать пентахлорид (μ-амидо)декаамминдикобальта(III) или хлорид (μ-амидо)бис{пентаамминкобальта(III)}.

Вопросы


11.4. Назовите следующие комплексы: а) [Co(CO)4]; б) [Fe(C5H5)2];
в) [Cu(H2O)4]2; г) [Zn(OH)4]2–; д) [Cr(H2O)5OH]2. 11.5. Напишите формулы следующих комплексных соединений: а) тетрафтороборат калия; б) тетрагидридоборат алюминия; в) хлорид диамм инсеребра(I); г) дицианоаргентат(I) натрия.11.3. Классификация комплексных соединений
Многообразие комплексных соединений не позволяет создать единую классификацию. Наиболее простая классификация — по заряду комплекса (нейтральные, анионные и катионные комплексы). Поскольку в водном растворе ионные связи легко разрываются и комплексные соединения необратимо диссоциируют (распадаются на отдельные внутри- и внешнесферные ионы), можно выделить комплексные кислоты, основания и соли. При классификации по типу лигандов все комплексы можно разделить на соединения с неорганическими и органическими лигандами, а далее рассматривать по отдельности комплексы с каждым типом лигандов.

11.3.1. Комплексы с неорганическими лигандами


Аквакомплексы содержат в качестве лигандов молекулы воды. Такие комплексы существуют в водных растворах и во многих кристаллогидратах. Так, при растворении в воде белого сульфата меди CuSO4 образуется голубой раствор, поскольку в воде сразу образуется комплексный катион тетрааквамеди(II) [Cu(H2O)4]2. При выпаривании этого раствора кристаллизуется голубой пентагидрат сульфата меди CuSO4 ⋅ 5H2O (медный купорос), который содержит аквакатионы меди [Cu(H2O)4]2. При прокаливании пентагидрита CuSO4 ⋅ 5H2O он постепенно теряет воду и при 200 °С снова превращается в белый безводный сульфат меди CuSO4.

В растворе аквакомплексы могут вступать в реакцию протолиза; большинство аквакомплексов — слабые кислоты (т. е. они отщепляют H, который, присоединяясь к несвязанным молекулам воды, образует катионы, прежде всего H3O), например:

[Cr(H2O)6]3 + H2O  H3O + [Cr(H2O)5OH]2

Вслед за первым протоном комплексный катион может потерять и следующие протоны, однако по мере отщепления протонов из внутренней сферы кислотные свойства комплекса резко ослабевают. Чем выше степень окисления комплексообразователя, тем сильнее кислотные свойства его аквакомплекса. Например, катион гексаакважелеза(II) [Fe(H2O)6]2 проявляет очень слабые кислотные свойства, а катион гексаакважелеза(III) [Fe(H2O)6]3 — сильная кислота, даже сильнее уксусной и ортофосфорной кислот.

В гидроксокомплексах лигандами служат гидроксид-ионы. В растворе гидроксокомплексы обычно бывают устойчивы только в присутствии избытка гидроксид-ионов. При разбавлении раствора гидроксокомплексы легко разрушаются, отщепляя гидроксид-ионы:

[Zn(OH)4]2– + H2O  [Zn(H2O)(OH)3] + OH[Zn(H2O)(OH)3] + H2O  [Zn(H2O)2(OH)2]↓ + OHИзвестны и более устойчивые гидроксокомплексы, например хорошо растворимые в воде Na2[Sn(OH)6] и Na2[Pb(OH)6], малорастворимые Na[Sb(OH)6] и Ag2[Pt(OH)6]. Гидроксокомплексы легко разрушить действием любых кислот (даже самых слабых), например водным раствором диоксида углерода CO2:

[Pb(OH)4]2– + 4H3O = Pb2 + 8H2O

[Al(OH)4] + 3CO2 = Al(OH)3↓ + 3HCO3

Химия растворов гидроксокомплексов очень сложная. Так, в водном раств оре гидроксокомплекса алюминия можно обнаружить ионы:

[Al(OH)4], [Al(H2O)2(OH)4], [Al(H2O)4(OH)2], [Al2(H2O)8(OH)2]4 и многие другие. В многоядерных гидроксокомплексах алюминия и некоторых других металлов комплексообразователи могут быть связаны через мостиковые гидроксолиганды.

Аммины — соединения в составе внутренней сферы которых сожержатся молекулы аммиака; аммиакаты часто содержат не только внутри-, но и внешнесферные молекулы аммиака. У многих переходных элементов аммины более устойчивы, чем аквакомплексы, и легко образуются в водном растворе.

[Cu(H2O)4]2 + 4NH3 = [Cu(NH3)4]2 + 4H2O

Часто сначала осаждается малорастворимый гидроксид или осно[вная соль, которая затем переходит в растворимый аммиакат:

2NH3 ⋅ H2O + SO = Cu2(SO4)(OH)2↓ + 2NH

Cu2(SO4)(OH)2 + 6NH3 ⋅ H2O + 2NH = 2[Cu(NH3) SO

Аммиачные комплексы разрушаются при нагревании, а также под действием кислот, вызывающих протонирование лиганда, например:

[Cu(NH3)4]2 + 4H3O = Cu2 + 4NH + 4H2O

Ацидокомплексы содержат в качестве лигандов анионы кислот. Это самый многочисленный класс комплексов с неорганическими лигандами. Многие элементы образуют комплексы с галогенид-ионами:

B(OH)3 + 4KF = 3KOH + K[BF4]

CuCl + Cl = [CuCl2]

В зависимости от числа анионных лигандов во внутренней сфере ацидокомплексы могут иметь разную окраску, например бромокомплексы меди: светло-зеленый [Cu(H2O)3Br], темно-зеленый [Cu(H2O)2Br2], коричневый [Cu(H2O)Br3], темно-вишневый [CuBr4]2–.

Один и тот же лиганд, например тиоцианат-ион NCS, с разными металлами также образует комплексы разного цвета: синий тетракис(тио циа нато)кобальтат(II) [Co(NCS)4]2–, зеленоватый тетракис(тиоцианато)феррат(II) [Fe(NCS)4]2–; красные [Fe(H2O)x(NCS)6–x]x–3 (самый устойчивый из акватиоцитатных комплексов железа — трис(тиоцианато)триакважелезо [Fe(H2O)3(NCS)3]).

Очень прочные комплексы образует с металлами цианид-ион CN(кислотный остаток циановодородной кислоты HCN). При этом окраска комплекса может изменяться в зависимости от степени окисления комплек со образователя: например, жёлтая кровяная соль K4[Fe(CN)6] ⋅ 3H2O (триг ид рат гексацианоферрата(II) калия) и красная кровяная соль K3[Fe(CN)6] (гексацианоферрат(III) калия).

Разрушение ацидокомплексов обычно происходит в результате обмена лигандов

[Fe(NCS)6]3– + 4F + 2H2O = [Fe(H2O)2F4] + 6NCS

или связывания комплексообразователя

[HgI4]2– + S2– = HgS↓ + 4I

Особую группу комплексов составляют анионгалогенаты, в которых галогены одновременно выполняют функцию и лигандов, и комплексообразователей. Степень окисления комплексообразователя может быть положительная — [IIIICl4], нулевая — [(I2)0(I3)2]2– или отрицательная — [I–I(I2)2]. Изополигалогенаты построены из атомов одного элемента (обычно иода), гетерополигалогенаты — из атомов разных элементов (при этом комплексообразователем всегда служит менее электроотрицательный галоген).

Способы получения анионгалогенатных комплексов достаточно разнообразны.

KI + I2 = K[I(I)2]

CsCl + IBr = Cs[I(Br)(Cl)] 2RbCl + I2Cl6 = 2Rb[ICl4]

KI + 2Cl2 = K[ICl4]

Все анионгалогенаты легко разрушаются при нагревании:

Rb[IBr2](т) = RbBr(т) + IBr(г)

K[I(I)2](т) = KI(т) + I2(г)

Гидридокомплексы, содержащие анион водорода Н, обычно образуют элементы группы IIIA (группа 13 в длиннопериодной таблице). Наиболее устойчивы гидридокомплексы бора и алюминия. Эти соединения — сильные восстановители; они реагируют с водой с выделением водорода:

Al[BH4]3 + 12H2O = Al(OH)3 + 3B(OH)3 + 12H2

Комплексные соединения, в которых лигандами служат молекулы монооксида углерода CO, называются карбонилами. Эти комплексы обычно содержат металл в нулевой или даже отрицательной степени окисления (например, [Cr(CO)6], [Mn(CO)5]). Стехиометрия карбонилов подчиняется правилу эффективного атомного номера (так называемому правилу Сиджвика3):

Суммарное количество электронов атома или иона металла и электронов, предоставленных ему лигандами, равно числу электронов в атоме ближайшего благородного (инертного) газа.

Наиболее устойчивы комплексы, в которых реализуется 18-электронная оболочка из s-, p- и d-электронов комплексообразователя и электронных пар лигандов. При этом d-элементы с четным числом валентных электронов образуют одноядерные карбонилы, а с нечетным — двухъядерные (со связью металл—металл). Карбонилы обычно термически неустойчивы, поэтому их образование используют как промежуточный этап при получении особо чистых металлов, например:

Ni + 4CO = [Ni(CO)4] (1 атм, 60–80 °С или 100–200 атм, 200–250 °С)

[Ni(CO)4] = Ni + 4CO (1 атм, 200 °С, без доступа воздуха)