Файл: Конспект урока Информатика, 10 класс. Урок 13. Тема Логические задачи и способы их решения.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 11.01.2024
Просмотров: 66
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Конспект урока
Информатика, 10 класс. Урок № 13.
Тема — Логические задачи и способы их решения
Перечень вопросов, рассматриваемых в теме: метод рассуждений, табличный метод, метод упрощения логических выражений.
Глоссарий по теме: для решения логических задач необходимо знать таблицы истинности логических операций и правила преобразования логических выражений (законы алгебры логики). Этот материал рассмотрен в предыдущих уроках №11,12.
Основная литература по теме урока:
Л. Л. Босова, А. Ю. Босова. Информатика. Базовый уровень: учебник для 10 класса
— М.: БИНОМ. Лаборатория знаний, 2017 (с.197—209)
Открытые электронные ресурсы по теме:
http://lbz.ru/metodist/authors/informatika/3/eor10.php
http://kpolyakov.spb.ru/school/ege.htm
Теоретический материал для самостоятельного изучения
Исходными данными в логических задачах являются высказывания. Высказывания и взаимосвязи между ними бывают так сложны, что разобраться в них без использования специальных методов сложно. Способов решения логических задач немало, но наибольшее распространение получили метод рассуждений, табличный метод и метод упрощения логических выражений. Познакомимся с ними поочередно.
Метод рассуждений
Основная идея этого метода состоит в том, чтобы последовательно анализировать всю информацию, имеющуюся в задаче, и делать на этой основе выводы.
Пример 1. На одной улице стоят в ряд 4 дома, в каждом из которых живёт по одному человеку. Их зовут Василий, Семён, Геннадий и Иван. Известно, что все они имеют разные профессии: скрипач, столяр, охотник и врач. Известно, что:
— столяр живёт правее охотника;
— врач живёт левее охотника;
— скрипач живёт с краю;
— скрипач живёт рядом с врачом;
— Семён не скрипач и не живёт рядом со скрипачом;
— Иван живёт рядом с охотником;
— Василий живёт правее врача;
— Василий живёт через дом от Ивана.
Определим, кто где живёт.
Изобразим дома прямоугольниками и пронумеруем их:
Известно, что скрипач живёт с краю (3). Следовательно, он может жить в доме 1 или в доме 4.
Скрипач живёт рядом с врачом (4), т. е. врач может жить правее (дом 2) или левее (дом 3) скрипача.
Но врач живёт левее охотника (2), следовательно, скрипач не может жить в доме 4, т. к. в противном случае получится, что врач, живущий рядом с ним, живёт правее охотника, а это противоречит условию (2). Таким образом, скрипач живёт в доме 1, а врач — рядом с ним, в доме 2.
Так как врач живёт левее охотника (2), а столяр — правее охотника (1), то охотнику достается дом 3, а столяру — дом 4.
Так как Семён не скрипач и не живёт рядом со скрипачом (5), то он может жить в доме 3 или в доме 4.
Так как Иван живёт рядом с охотником (6), то он может жить в доме 2 или 4.
Так как Василий живёт правее врача (7), то он может жить в доме 3 или 4.
По условию (8) Василий живет через дом от Ивана, значит, в доме 1 может жить только Геннадий, в доме 2 — Иван, в доме 4 — Василий, в доме 3 — Семён.
Как видите, далеко не самая сложна задача потребовала достаточно серьезных рассуждений. Этот метод, как правило, применяется для решения простых задач.
Задачи о рыцарях и лжецах — это такой класс логических задач, в которых фигурируют персонажи:
- рыцарь — человек, всегда говорящий правду;
- лжец — человек, всегда говорящий ложь;
- обычный человек — человек, который в одних ситуациях может говорить правду, а в других лгать.
Решение подобных задач сводится к перебору вариантов и исключению тех из них, которые противоречат условию.
Пример 2.Двое жителей острова А и В разговаривали между собой в саду. Проходивший мимо незнакомец спросил у А: «Вы рыцарь или лжец?». Тот ответил, но так неразборчиво, что незнакомец не смог ничего понять. Тогда незнакомец спросил у В: «Что сказал А?».
«А сказал, что он лжец», — ответил В. Может ли незнакомец доверять ответу В? Мог ли А сказать, что он лжец?
Если А — рыцарь, то он скажет правду и сообщит, что он рыцарь.
Если А — лжец, то он скроет правду и сообщит, что он рыцарь.
Это значит, что В, утверждающий, что «А сказал, что он лжец» заведомо лжёт; он – лжец.
Определить, кем является А, в данной ситуации невозможно.
Табличный метод
Для решения логических задач, связанных с рассмотрением нескольких конечных множеств, прибегают к помощи таблиц или графов. От того, насколько удачно выбрана их структура, во многом зависит успешность решения задачи.
Пример 3. В летнем лагере в одной палатке жили Алёша, Боря, Витя и Гриша. Все они разного возраста, учатся в разных классах (с 7-го по 10-й) и занимаются в разных кружках: математическом, авиамодельном, шахматном и фотокружке. Выяснилось, что
— фотограф старше Гриши;
— Алеша старше Вити, а шахматист старше Алёши;
— в воскресенье Алёша с фотографом играли в теннис, а Гриша в то же время проиграл авиамоделисту в городки.
Определим, кто в каком кружке занимается.
В этой задаче речь идёт о высказывательной форме (предикате) вида «Ученик х занимается в кружке у». Требуется определить такие значения х и у, чтобы высказывательная форма превратилась в истинное высказывание.
Составим таблицу:
Рассмотрим условия (1)-(3) и сделаем выводы: Гриша — не фотограф (1); шахматист — не Алёша и не Витя (2); Алёша — не фотограф и не авиамоделист, Гриша — не фотограф и не авиамоделист (3). Отметим это в таблице:
Мы можем сделать вывод, что Алёша занимается математикой
, а Гриша — шахматами:
Из того, что Гриша — шахматист и условий (1) и (2) можем расположить учеников по возрасту (в порядке возрастания): Витя — Алёша — Гриша — фотограф. Следовательно, Боря — фотограф.
Ответ: Витя (7 класс) занимается в авиамодельном кружке, Алёша (8 класс) — в математическом, Гриша (9 класс) — в шахматном, Боря (10 класс) — в фотокружке.
Использование таблиц истинности для решения логических задач
Аппарат алгебры логики позволяет применять к широкому классу логических задач универсальные методы, основанные на формализации условий задачи.
Одним из таких методов является построение таблицы истинности по условию задачи и её анализ. Для этого следует:
-
Выделить из условия задачи элементарные (простые) высказывания и обозначить их буквами. -
Записать условие задачи на языке алгебры логики, соединив простые высказывания в составные с помощью логических операций. -
Построить таблицу истинности для полученных логических выражений. -
Выбрать решение – набор логических переменных (элементарных высказываний), при котором значения логических выражений соответствуют условиям задачи. -
Убедиться, что полученное решение удовлетворяет условиям задачи.
Пример 4. Три подразделения А, В, С торговой фирмы стремились получить по итогам года максимальную прибыль. Экономисты высказали следующие предположения:
-
Если А получит максимальную прибыль, то максимальную прибыль получат В и С. -
А и С получат или не получат максимальную прибыль одновременно. -
Необходимым условием получения максимальной прибыли подразделением С является получение максимальной прибыли подразделением В.
По завершении года оказалось, что одно из трёх предположений ложно, а остальные два истинны.
Выясним, какие из названных подразделений получили максимальную прибыль.
Рассмотрим элементарные высказывания:
А — «А получит максимальную прибыль»;
В — «В получит максимальную прибыль»;
С — «С получит максимальную прибыль».
Запишем на языке алгебры логики прогнозы, высказанные экономистами:
Составим таблицу истинности для F1, F2, F3.
Вспомним, что из трёх прогнозов F1, F2, F3 один оказался ложным, а два других — истинным. Эта ситуация соответствует четвёртой строке таблицы.
Ответ: максимальную прибыль получили подразделения В и С.
Метод упрощения логических выражений
Следующий формальный способ решения логических задач состоит в том, чтобы:
-
Выделить из условия задачи элементарные (простые) высказывания и обозначить их буквами. -
Записать условие задачи на языке алгебры логики, соединив простые высказывания в составные с помощью логических операций. -
Составить единое логическое выражение, учитывающее все требования задачи. -
Используя законы алгебры логики, упростить полученное выражение и вычислить его значение. -
Выбрать решение – набор логических переменных (элементарных высказываний), при котором построенное логическое выражение является истинным. -
Убедиться, что полученное решение удовлетворяет условиям задачи.
Пример 5. На вопрос, кто из трёх учащихся изучал логику, был получен ответ: «Если изучал первый, то изучал и второй, но неверно, что если изучал третий, то изучал и второй». Кто из учащихся изучал логику?
Обозначим через А, В, С простые высказывания:
А — «Первыйученик изучал логику»;
В — «Второйученик изучал логику»;
С — «Третийученик изучал логику».
Из условия задачи следует истинность высказывания: .
Упростим получившееся высказывание:
Получившееся высказывание будет истинным только в случае, если С — истина, а А и В — ложь.
Ответ: логику изучал только третий ученик.