Файл: Концпект лекций химия нефти и газа.doc

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 11.01.2024

Просмотров: 557

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


При утонении сольватного слоя на поверхности ассоциатов повышается нескомпенсированность поверхностной энергии, система становится неустойчивой. После полного удаления сольватного слоя дисперсионная среда начинает взаимодействовать непосредственно с ядром надмолекулярной структуры, обусловливая ее полное разрушение при некотором значении РС, когда ССЕ полностью переходит в состояние молекулярного раствора с бесконечной устойчивостью против расслоения (система термодинамически устойчива).

Примером проявления свойств нефти как дисперсной системы служит следующая ситуация. Дебит скважины могут ограничивать факторы, связанные с физико-химическими свойствами потока, движущегося в условиях изменяющегося давления и температуры. К ним относятся: песчаные пробки, образующиеся в результате скрепления частиц вяжущими компонентами нефти, АСПО, кристаллогидраты природных газов и др.

Все эти явления связаны с фазообразованием, изменением размеров дисперсной фазы, расслоением дисперсной системы. Чтобы их предотвратить, следует повысить устойчивость нефти против расслоения путем регулирования межмолекулярных взаимодействий внешними воздействиями, например, введением различных добавок.

Так, для предотвращения нежелательного выпадения парафинов и асфальтенов на поверхность скважины можно применить подачу на забой активатора – концентрата ароматических углеводородов. В результате изменения баланса сил ядро ССЕ диспергируется, тем самым повышается устойчивость дисперсной системы против расслоения и происходит вынос асфальтенов и парафинов вместе с потоком флюидов на поверхность.

Другой пример. Добыча нефти на Чкаловском месторождении осуществляется из двух горизонтов: юрского и М-горизонта (палеозойского). Юрская нефть типична для Томской области, а нефть палеозойского – уникальна по своим реологическим свойствам, обусловленным высоким содержанием парафина: 20-38 % в зависимости от скважины. Смол и асфальтенов, соответственно, 0,56 % и 0,43 % (1992 г.), т.е. очень мало, а в 1994 г. их не обнаружили совсем. Температура застывания нефти М-горизонта +12 - +18оС, динамическая вязкость – 7,98 мПа*с. Температура застывания юрской нефти: -25оС, динамическая вязкость – 1,65 мПа*с.

Вязкость палеозойской нефти очень высокая
, а при +12 - +18оС свойство текучести утрачивается полностью из-за образования структуры парафиновых ассоциатов. Как перекачивать такую нефть? Выход был найден в смешении палеозойской и юрской нефтей с соотношении 1:9, т.е. изменили соотношение структурирующихся и неструктурирующихся компонентов. Вязкость системы составила 1,885 м2/с. Но при температуре ниже 20оС неньютоновские свойства остаются.

М

ежду дисперсностью и макроскопическими свойствами нефтяной дисперсной системы существует связь, выражаемая полиэкстремальными зависимостями (рис. 3.2). Такие зависимости позволяют подбирать оптимальные сочетания внешних воздействий для целенаправленного изменения коллоидно-химических и реологических свойств нефтей.


Рис. 3.2. Зависимость кинематической вязкости (а) и температуры застывания (б) смеси песцовой и западно-сибирской нефти от содержания песцовой нефти в смеси
Оптимизация процессов транспорта нефтяных систем связана с проблемой уменьшения гидравлического сопротивления. Принципиально новые решения возможны путем целенаправленного воздействия на нефтяные системы перед и в процессе транспорта.

На рис. 3.2 представлена полиэкстремальная зависимость вязкости и температуры застывания нефтяной смеси от соотношения исходных нефтей. При транспорте в условиях переменных термобарических параметров нефть претерпевает многократные изменения структуры, результатом является изменение степени дисперсности и свойств поверхностных слоев, разделяющих объемную фазу и поверхность трубопроводов.

Известно, что при переходе к развитому турбулентному течению происходит резкое изменение скорости потока при переходе от пристеночной области к объемной. Физико-химический механизм действия добавок связан ламинаризацией турбулентного потока, изменением его структуры, уменьшением интенсивности поперечных турбулентных пульсаций и поперечного переноса импульса при одновременном увеличении толщины пристенного слоя.

Более "массивные" дисперсные частицы отстают от потока, мигрируют в поперечном направлении и скапливаются вблизи поверхности раздела. В нефтяной системе такими "массивными" частицами являются высокомолекулярные смолисто-асфальтеновые соединения. Этот эффект ведет к концентрационному перераспределению компонентов по радиусу трубы и, соответственно, к дополнительному уменьшению устойчивости системы.

Регулирование гидродинамических параметров путем управления физико-химическими характеристиками транспортируемой нефтяной системы позволило бы значительно увеличить пропускную способность нефтепроводов.

При изучении процессов извлечения нефти из пласта исходят из того, что нефть рассматривают как некое физическое тело с усредненными параметрами, взаимодействующее с породой. И именно хороктеристики породы определяют коэффициент нефтеотдачи пласта. На первый взгляд это вполне очевидно: порода имеет постоянные характеристики: проницаемость, пористость, неоднородность капилляров, удельная поверхность, смачиваемость и т.д., в то время как характеристики нефти переменчивы и в большой степени зависят от внешних условий. Вместе с тем, на природу и эффективность контакта нефти с породой, безусловно, влияют особенности свойств нефти, обусловленные ее
дисперсным состоянием в породе, и игнорирование этого влияния может привести к серьезному методическому просчету и, как следствие, к снижению результативности методов повышения нефтеотдачи.

В силу развитой поверхности пор важным коллоидно-химическим фактором, влияющим на эффективность добычи нефти, является строение и толщина слоев нефти на границе с коллекторными породами. Граничный слой толщиной порядка нескольких микрометров представляет собой дисперсную систему, по строению и свойствам отличную от объемной фазы нефти, которая характеризуется собственной дисперсностью. Неоднородность дисперсного строения породы и дисперсность нативной нефти осложняют решение, казалось бы, очевидной задачи — регулирование толщин граничных слоев в соответствии с размерами капилляров породы. Исходя из того, что большая доля нефти не может быть извлечена на дневную поверхность и находится в гранично-связанном состоянии, проблему повышения коэффициента нефтеотдачи можно решить, связав ее именно с регулированием толщины граничных слоев нефти.

Т

Рис. 3.3. Зависимость толщины граничного слоя арланской нефти от содержания препарата ОП-4 (1) и сепарола (2) при пластовой температуре 24С

олщины граничных слоев меняются экстремально в зависимости от природы, концентрации и степени дисперсности вытесняющих реагентов. Так, под влиянием ПАВ происходит почти двухкратное изменение толщин граничных слов нефти (рис. 3.3). Растворы ПАВ, полимеров, легкие углеводороды и другие реагенты, применяемые для увеличения коэффициента нефтеотдачи, фактически оказывают воздействие на толщину граничных слоев, что ведет к регулированию вязкости, угла смачивания и поверхностного натяжения на макроскопическом уровне.

Таким образом, достижение высоких показателей процессов добычи, транспорта и переработки нефти возможно путем установления оптимальных соотношений между параметрами внешнего воздействия на нефтяную дисперсную систему в области экстремумов нелинейных эффектов.

Итак, в общем случае в результате слабых взаимодействий ВМС и НМС происходит физическое агрегирование молекул ВМС с образованием надмолекулярных структур и ССЕ. В нефтяной системе при данных условиях углеводородные и не углеводородные соединения образуют: сильноструктурированную (надмолекулярную), слабоструктурированную (сольватные оболочки) и неструктурированную (дисперсионная среда) части. Между ними устанавливается обратимое динамическое
равновесие. Для изменения равновесия необходимо изменить энергию нефтяной системы.

На стадии слабых взаимодействий надмолекулярные структуры формируются за счет сил Ван-дер-Ваальса. В зависимости от природы ВМС нефти и величины сил взаимодействия молекул для каждого вида ВМС образуется свой тип надмолекулярных структур, обладающих определенными физико-химическими свойствами (асфальтеновый, парафиновый и др. ассоциаты).

В зависимости от температуры возможно существование трех состояний нефтяных дисперсных систем: молекулярные растворы, обратимо структурированные жидкости и необратимо структурированные жидкости.

Процессами физического агрегирования можно управлять изменением сделующих факторов:

  • Отношение структурирующихся компонентов к неструктурирующимся;

  • Температура;

  • Давление;

  • Растворяющая сила среды;

  • Степень диспергирования ассоциатов, применяя механические способы, электрические и магнитные поля и др.


4. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА НЕФТИ
Физико–химические свойства нефтей в пластовых условиях значительно отличаются от свойств дегазированных нефтей. Отличия обусловлены влиянием высоких пластовых давлений, температур и содержанием растворенного газа, количество которого может достигать до 400 нм3 на 1 м3 нефти.

При проектировании систем разработки нефтяных месторождений, подсчете запасов нефти и попутного газа, подборе технологий и техники извлечения нефти из пласта, а также выборе и обосновании оборудования для сбора нефти на промыслах определен перечень основных свойств нефтей пластовых и дегазированных, которые обычно изучаются по глубинным пробам, отбираемым с забоя скважины. Разберем их подробнее.
4.1. Плотность нефти
Плотность характеризует количества покоящейся массы, выраженной в единице объёма, [г/см3; кг/м3]:

ρ = m / v. (4.1)

Для определения плотности используют специальные приборы плотномеры (нефтеденсиметр, ареометр), принцип действия которых основан на законе Архимеда.

Под относительной плотностьюо) понимают отношение величин абсолютной плотности нефти (ρн) к плотности воды (ρВ), определенной при 4оС:

ρо = ρн