Файл: Концпект лекций химия нефти и газа.doc

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 11.01.2024

Просмотров: 555

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
зования циклоалканов связан с дегидратационной циклизацией непредельных жирных кислот с образованием насыщенных циклических углеводородов.

Из образующихся циклоалкенов при дальнейших превращениях получаются нафтеновые и нафтеново-ароматические углеводороды.

Возможность такого механизма образования циклоалканов изучена А. И. Богомоловым экспериментально при нагревании олеиновой кислоты до 200°С с алюмосиликатным катализатором. При этом были получены углеводороды от С5 до С40 различных классов — алифатические, алициклические и ароматические. Среди образовавшихся циклоалканов преобладали изомеры с пяти- и шестичленными кольцами и мостикового типа, как в обычных природных нефтях. Были обнаружены также би- и трициклические циклоалканы.

Арены. Для живого вещества организмов ароматические структуры нехарактерны, в то время как в нефтях содержание ароматических углеводородов составляет 10—20, а иногда и до 35 %.

В живом веществе ароматические структуры содержатся в лигнине (производные гидроксифенилпропана), некоторых аминокислотах, а также гидрохинонах (витамины Е, К) в виде отдельных ароматических колец. Их доля в исходном для нефти веществе организмов очень мала, поэтому образование аренов в сапропелевом органическом веществе осадков, пород и в нефтях следует связывать главным образом с вторичными процессами преобразования органического вещества, происходящими в осадках на стадиях диагенеза и особенно катагенеза в зоне повышенных температур.

Частично арены образуются сразу же после отмирания организмов в свежих илах вследствие преобразования полиеновых соединений типа каротиноидов, из стероидных соединений, бензохинонов, а также гидрохинонов и нафтохинонов, в структуре которых имеются ароматические ядра:

В экспериментах А. И. Богомолова по термокатализу непредельных жирных кислот и термическому разложению органического вещества сапропелевых сланцев при 200°С отмечалось образование смеси углеводородов, в которой арены составляли
от 15 до 40 %, причем они были представлены всеми типами ареновых структур, характерных для природных нефтей.

При превращении непредельных жирных кислот в присутствии глины как катализатора образуются сначала предельные пятичленные и шестичленные кетоны и неконденсированные нафтены. Дальнейшее превращение предельных циклических кетонов идет по реакции дегидрационной конденсации, для циклогексанона, например, следующим образом:


При этом образуется додекагидротрифенилен — гибридный углеводород нафтеново-ароматической структуры.

Рассмотренные материалы свидетельствуют о том, что образование всех основных классов углеводородов природных нефтей частично обусловлено процессом биосинтеза углеводородов в живом веществе, но главным образом — термическим или термокаталитическим превращением липидного материала биогенного сапропелевого органического вещества осадочных пород в зоне катагенеза при проявлении главной фазы нефтеобразования.
2. ХИМИЧЕСКИЙ СОСТАВ НЕФТИ И ГАЗА
Знание химического состава природных нефтяных систем служит отправной точкой для прогнозирования их фазового состояния и свойств фаз при различных термобарических условиях, соответствующих процессам добычи, транспортировки и переработки нефтяных смесей. Тип смеси - нефть, газоконденсат или газ - также зависит от ее химического состава и сочетания термобарических условий в залежи. Химический состав определяет возможное состояние компонентов нефтяных систем при данных условиях - молекулярное или дисперсное.

Петров Ал. А., написавший серию хорошо известных специалистам монографий, посвященных химическому составу нефтей, утверждает, что в нефтях идентифицировано до 1000 индивидуальных углеводородов состава С140.

Нефтяные системы отличаются многообразием компонентов, способных находиться в молекулярном или дисперсном состоянии в зависимости от внешних условий. Среди них встречаются наиболее и наименее склонные к различного рода межмолеку

лярным взаимодействиям (ММВ), что в итоге обусловливает ассоциативные явления и исходную дисперсность нефтяных систем при нормальных условиях.

Химический состав для нефти различают как элементный и вещественный.

Основными элементами состава нефти являются углерод (83,5-87 %) и водород (11,5-14 %). Кроме того, в нефти присутствуют:


сера в количестве от 0,1 до 1-2 % (иногда ее содержание может доходить до 5-7 %, во многих нефтях серы практически нет);

азот в количестве от 0,001 до 1 (иногда до 1,7 %);

кислород (встречается не в чистом виде, а в различных соединениях) в количестве от 0,01 до 1 % и более, но не превышает 3,6 %.

Из других элементов в нефти присутствуют - железо, магний, алюминий, медь, олово, натрий, кобальт, хром, германий, ванадий, никель, ртуть, золото и другие. Однако, содержание их менее 1 %.

В вещественном плане нефть в основном состоит из углеводородов и гетероорганических соединений. Среди последних основное внимание следует обратить на смолоасфальтеновые вещества (CAB), которые можно рассматривать как концентрат наиболее склонных к межмолекулярным взаимодействиям соединений.
2.1. Углеводородные соединения
Углеводороды (УВ) представляют собой органические соединения углерода и водорода. В нефти в основном содержатся следующие классы углеводородов.

Алканы или парафиновые углеводороды – насыщенные (предельные) УВ с общей формулой CnH2n+2. Содержание их в нефти составляет 2 - 30-70 %. Различают алканы нормального строения (н-алканы - пентан и его гомологи), изостроения (изоалканы - изопентан и др.) и изопреноидного строения (изопрены – пристан, фитан и др.)

В нефти присутствуют газообразные алканы от С1 до С4 (в виде растворённого газа), жидкие алканы С5 – С16, составляют основную массу жидких фракций нефти и твёрдые алканы состава С17 – С53 и более, которые входят в тяжёлые нефтяные фракции и известны как твёдые парафины. Твёрдые алканы присутствуют во всех нефтях, но обычно в небольших количествах - от десятых долей до 5 % (масс.), в редких случаях - до 7-12 % (масс.). В Томской области нефть Чкаловского месторождения содержит до 18 % твердых парафинов.

В зависимости от внутрипластовых условий и компонентного состава пластовой залежи определяется тип месторождения - газовое, газоконденсатное или нефтяное. Основные компоненты чисто газовых месторождений - низкомолекулярные алканы - метан, этан, пропан и бутан (н- и изостроения) в индивидуальном виде при нормальных условиях (0,1 МПа и 20°С) являются газами. В нефтяных
природных газах доминируют алканы.

Кроме алканов в состав природных газов могут входить оксид (СО) и диоксид углерода (СО2), сероводород (Н2S), азот (N2), а также инертные газы - Не, Аг, Ne, Xe. В чисто газовых залежах почти полностью отсутствует конденсат (Табл. 2.1).

Если при изотермическом снижении давления в пласте тяжелые компоненты природного газа выделяются в виде жидкой фазы (конденсата), то такие смеси называют газоконденсатными. При этом часть конденсата может безвозвратно теряться в породе. Содержание конденсата (С5 и высшие) в газе зависит от его состава и пластовых условий (температуры и давления, достигающее 25-40 МПа).

Количественным критерием отнесения залежи к газоконденсатным месторождениям служит газоконденсатный фактор, равный количеству газа 3) при нормальных условиях, в котором растворен 1 м3 конденсата при пластовых условиях. Залежи, газоконденсатный фактор которых не превышает 104, обычно относят к газоконденсатным.

Таблица 2.1.

Химический состав газов различных месторождений

Объемное содержание компонентов, % (об.)

Месторождение СН4 С2Н6 С3Н8 С4Н10 С5Н12 СО2 другие компоненты

Чисто газовые месторождения

Уренгойское 95,1 1,1 0,3 0,07 0,03 0,4 3,0

Медвежье 98,3 0,3 0,1 0,15 - 0,1 1,0

Саратовское 94,7 1,8 0,2 0,1 - 0,2 3,0

Газоконденсатные месторождения

Оренбургское 84,8 4,5 1,4 0,3 1,5 1,15 9,0

Вуктыльское 79,8 8,7 3,9 1,8 6,4 0,1 4,3

Ленинградское 86,9 6,0 1,6 1,0 0,5 1,2 2,8

Попутные газы газонефтяных месторождений

Ромашкинское 39,0 20,0 18,5 6,2 4,7 0,1 11,5

Небит-Дагское 85,7 4,0 3,5 2,0 1,4 2,1 1,3

Мухановское 30,1 20,2 23,6 10,6 4,8 1,5 9,2
Нефть в пласте также содержит газ. Количество растворенного газа в нефти характеризуется величиной "газосодержание" (Го). Газосодержание для пластовых нефтей колеблется от долей единицы до