Файл: Рабочая программа учебного предмета Геометрия.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.01.2024

Просмотров: 29

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Приложение к ООП ООО

МКОУ «Курайская СОШ»

приказ №205 от 31.08.2022

Рабочая программа

учебного предмета «Геометрия»

для 9 класса

Составитель: Бапинова С.С.

учитель физики и математики

1. Пояснительная записка

  1. Рабочая программа по геометрии для 9 класса разработана с учетом требований федерального компонента государственного стандарта общего образования и в соответствии с авторской программой А.Г. Мерзляк, В.Б. Полонский, М.С. Якир, Е.В. Буцко (Математика: программы : 5–9 классы А.Г. Мерзляк, В.Б. Полонский, М.С. Якир, Е.В. Буцко /. — М. : Вентана-Граф, 2013. — 112 с.) В ней также учитываются основные идеи и положения Программы развития и формирования универсальных учебных действий для основного общего образования которые обеспечивают формирование российской гражданской идентичности, коммуникативных качеств личности и способствуют формированию ключевой компетенции – умения учиться.



  2. Изучение геометрии в 9 классе направлено на достижение следующих целей:



  3. 1) в направлении личностного развития

  4. • развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

  5. • формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

  6. • воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

  7. • формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

  8. • развитие интереса к математическому творчеству и математических способностей;

  9. 2) в метапредметном направлении

  10. • формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

  11. • развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

  12. • формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;

  13. 3) в предметном направлении

  14. • овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;

  15. создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.



2. Планируемые результаты
Изучение геометрии по данной программе способствует формированию у учащихся личностных, метапредметных и предметных результатов обучения, соответствующих требованиям федерального государственного образовательного стандарта основного общего образования.

Личностные результаты:
1) воспитание российской гражданской идентичности; патриотизма, уважения к Отечеству, осознания вклада отечественных учёных в развитие мировой науки;

2) ответственное отношение к учению, готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

3) осознанный выбор и построение дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений с учётом устойчивых познавательных интересов, а так же на основе формирования уважительного отношения к труду, развитие опыта участия в социально значимом труде;

4) умение контролировать процесс и результат учебной и математической деятельности;

5) критичность мышления, инициатива, находчивость, активность при решении математических задач.

Метапредметные результаты:

1) умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе, развивать мотивы и интересы своей познавательной деятельности;

2) умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действия в рамках предложенных условий и требований, корректировать свои действия в соответствии изменяющейся ситуацией;

3) Умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации;

4) умение устанавливать причинно- следственные связи, строить логические рассуждения, умозаключения ( индуктивное, дедуктивное, по аналогии) и делать выводы

5) умение иллюстрировать изученные понятия и свойства фигур, опровергать неверные утверждения

6) развитие компетентности в области использования информационно-коммуникационных технологий;



7) первоначальные представления о идеях и методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

8) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

9) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме, принимать решение у условиях неполной или избыточной, точной или вероятностной информации;

10) Умение понимать и использовать математические средства наглядности (графики, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

11) умение выдвигать гипотезы при решении задачи, понимать необходимость их проверки;

12) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Предметные результаты:

1) осознание значения геометрии в повседневной жизни человека;

2) представление о геометрии как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации ;

3) развитие умение работать с учебным математическим текстом ( анализировать извлекать необходимую информацию), точно и грамотно излагать свои мысли с применением математической терминологии и символики, проводить классификацию, логические обоснования;

4) владение базовым понятийным аппаратом по основным разделам содержания;

5) систематические знания о фигурах и их свойствах;

6) практически значимые геометрические умения и навыки, их применение к решению геометрических и негеометрических задач, предполагающее умения:


  • изображать фигуры на плоскости;

  • использовать геометрический язык для описания предметов окружающего мира;

  • измерять длины отрезков, величины углов.

  • распознавать и изображать равные фигуры;

  • выполнять построение геометрических фигур с помощью циркуля и линейки;

  • читать и использовать информацию, представленную на чертежах и схемах;

  • проводить практические расчёты;


1. Решение треугольников

Ученик научится:

Формулировать:
определения: синуса, косинуса, тангенса, котангенса угла от 0° до 180°;
свойство связи длин диагоналей и сторон параллелограмма.
Формулировать и разъяснять основное тригонометрическое тождество. Вычислять значение тригонометрической функции угла по значению одной из его заданных функций.

Формулировать и доказывать теоремы: синусов, косинусов, следствия из теоремы косинусов и синусов, о площади описанного многоугольника.
Записывать и доказывать формулы для нахождения площади треугольника, радиусов вписанной и описанной окружностей треугольника.
Выпускник получит возможность Применять изученные определения, теоремы и формулы к решению задач

2 .Правильные многоугольники

Ученик научится

Пояснять, что такое центр и центральный угол правильного многоугольника, сектор и сегмент круга.
Формулировать:
определение правильного многоугольника;
свойства правильного многоугольника.
Доказывать свойства правильных многоугольников.
Записывать и разъяснять формулы длины окружности, площади круга.
Записывать и доказывать формулы длины дуги, площади сектора, формулы для нахождения радиусов вписанной и описанной окружностей правильного многоугольника.
Строить с помощью циркуля и линейки правильные треугольник, четырёхугольник, шестиугольник.

Выпускник получит возможность Применять изученные определения, теоремы и формулы к решению задач.
3. Декартовы координаты на плоскости
Ученик научится:

Описывать прямоугольную систему координат.
Формулировать: определение уравнения фигуры, необходимое и достаточное условия параллельности двух прямых.
Записывать и доказывать формулы расстояния между двумя точками, координат середины отрезка.
Выводить уравнение окружности, общее уравнение прямой, уравнение прямой с угловым коэффициентом.
Доказывать необходимое и достаточное условие параллельности двух прямых.

Применять изученные определения, теоремы и формулы к решению задач

Выпускник получит возможность

Применять изученные определения, теоремы и формулы к решению задач; овладеть координатным методом решения задач на вычисление и доказательство;

приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;

приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисление и доказательство».
4. Векторы.

Ученик научится:

Описывать
понятия векторных и скалярных величин. Иллюстрировать понятие вектора.
Формулировать:
определения: модуля вектора, коллинеарных векторов, равных векторов, координат вектора, суммы векторов, разности векторов, противоположных векторов, умножения вектора на число, скалярного произведения векторов;
свойства: равных векторов, координат равных векторов, сложения векторов, координат вектора суммы и вектора разности двух векторов, коллинеарных векторов, умножения вектора на число, скалярного произведения двух векторов, перпендикулярных векторов.
Доказывать теоремы: о нахождении координат вектора, о координатах суммы и разности векторов, об условии коллинеарности двух векторов, о нахождении скалярного произведения двух векторов, об условии перпендикулярности.
Находить косинус угла между двумя векторами.

Применять изученные определения, теоремы и формулы к решению задач

Выпускник получит возможность

Применять изученные определения, теоремы и формулы к решению задач;

овладеть векторным методом для решения задач на вычисление и доказательство;

приобрести опыт выполнения проектов на тему «Применение векторного метода при решении задач на вычисление и доказательство».
5. Геометрические преобразования

Ученик научится:

Приводить примеры преобразования фигур.

Описывать преобразования фигур: параллельный перенос, осевая симметрия, центральная симметрия, поворот, гомотетия, подобие.
Формулировать:
определения: движения; равных фигур; точек, симметричных относительно прямой; точек, симметричных относительно точки; фигуры, имеющей ось симметрии; фигуры, имеющей центр симметрии; подобных фигур;
свойства: движения, параллельного переноса, осевой симметрии, центральной симметрии, поворота, гомотетии.
Доказывать теоремы: о свойствах параллельного переноса, осевой симметрии, центральной симметрии, поворота, гомотетии, об отношении площадей подобных треугольников.

Выпускник получит возможность:

Применять изученные определения, теоремы и формулы к решению задач; приобрести опыт выполнения проектов по темам: «Геометрические преобразования на плоскости», «Построение отрезков по формуле», приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;