ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 12.01.2024
Просмотров: 29
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Приложение к ООП ООО
МКОУ «Курайская СОШ»
приказ №205 от 31.08.2022
Рабочая программа
учебного предмета «Геометрия»
для 9 класса
Составитель: Бапинова С.С.
учитель физики и математики
1. Пояснительная записка
-
Рабочая программа по геометрии для 9 класса разработана с учетом требований федерального компонента государственного стандарта общего образования и в соответствии с авторской программой А.Г. Мерзляк, В.Б. Полонский, М.С. Якир, Е.В. Буцко (Математика: программы : 5–9 классы А.Г. Мерзляк, В.Б. Полонский, М.С. Якир, Е.В. Буцко /. — М. : Вентана-Граф, 2013. — 112 с.) В ней также учитываются основные идеи и положения Программы развития и формирования универсальных учебных действий для основного общего образования которые обеспечивают формирование российской гражданской идентичности, коммуникативных качеств личности и способствуют формированию ключевой компетенции – умения учиться. -
-
Изучение геометрии в 9 классе направлено на достижение следующих целей: -
-
1) в направлении личностного развития -
• развитие логического и критического мышления, культуры речи, способности к умственному эксперименту; -
• формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта; -
• воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения; -
• формирование качеств мышления, необходимых для адаптации в современном информационном обществе; -
• развитие интереса к математическому творчеству и математических способностей; -
2) в метапредметном направлении -
• формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества; -
• развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования; -
• формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности; -
3) в предметном направлении -
• овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни; -
• создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.
2. Планируемые результаты
Изучение геометрии по данной программе способствует формированию у учащихся личностных, метапредметных и предметных результатов обучения, соответствующих требованиям федерального государственного образовательного стандарта основного общего образования.
Личностные результаты:
1) воспитание российской гражданской идентичности; патриотизма, уважения к Отечеству, осознания вклада отечественных учёных в развитие мировой науки;
2) ответственное отношение к учению, готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
3) осознанный выбор и построение дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений с учётом устойчивых познавательных интересов, а так же на основе формирования уважительного отношения к труду, развитие опыта участия в социально значимом труде;
4) умение контролировать процесс и результат учебной и математической деятельности;
5) критичность мышления, инициатива, находчивость, активность при решении математических задач.
Метапредметные результаты:
1) умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе, развивать мотивы и интересы своей познавательной деятельности;
2) умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действия в рамках предложенных условий и требований, корректировать свои действия в соответствии изменяющейся ситуацией;
3) Умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации;
4) умение устанавливать причинно- следственные связи, строить логические рассуждения, умозаключения ( индуктивное, дедуктивное, по аналогии) и делать выводы
5) умение иллюстрировать изученные понятия и свойства фигур, опровергать неверные утверждения
6) развитие компетентности в области использования информационно-коммуникационных технологий;
7) первоначальные представления о идеях и методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;
8) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
9) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме, принимать решение у условиях неполной или избыточной, точной или вероятностной информации;
10) Умение понимать и использовать математические средства наглядности (графики, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
11) умение выдвигать гипотезы при решении задачи, понимать необходимость их проверки;
12) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.
Предметные результаты:
1) осознание значения геометрии в повседневной жизни человека;
2) представление о геометрии как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации ;
3) развитие умение работать с учебным математическим текстом ( анализировать извлекать необходимую информацию), точно и грамотно излагать свои мысли с применением математической терминологии и символики, проводить классификацию, логические обоснования;
4) владение базовым понятийным аппаратом по основным разделам содержания;
5) систематические знания о фигурах и их свойствах;
6) практически значимые геометрические умения и навыки, их применение к решению геометрических и негеометрических задач, предполагающее умения:
-
изображать фигуры на плоскости; -
использовать геометрический язык для описания предметов окружающего мира; -
измерять длины отрезков, величины углов. -
распознавать и изображать равные фигуры; -
выполнять построение геометрических фигур с помощью циркуля и линейки; -
читать и использовать информацию, представленную на чертежах и схемах; -
проводить практические расчёты;
1. Решение треугольников
Ученик научится:
Формулировать:
определения: синуса, косинуса, тангенса, котангенса угла от 0° до 180°;
свойство связи длин диагоналей и сторон параллелограмма.
Формулировать и разъяснять основное тригонометрическое тождество. Вычислять значение тригонометрической функции угла по значению одной из его заданных функций.
Формулировать и доказывать теоремы: синусов, косинусов, следствия из теоремы косинусов и синусов, о площади описанного многоугольника.
Записывать и доказывать формулы для нахождения площади треугольника, радиусов вписанной и описанной окружностей треугольника.
Выпускник получит возможность Применять изученные определения, теоремы и формулы к решению задач
2 .Правильные многоугольники
Ученик научится
Пояснять, что такое центр и центральный угол правильного многоугольника, сектор и сегмент круга.
Формулировать:
определение правильного многоугольника;
свойства правильного многоугольника.
Доказывать свойства правильных многоугольников.
Записывать и разъяснять формулы длины окружности, площади круга.
Записывать и доказывать формулы длины дуги, площади сектора, формулы для нахождения радиусов вписанной и описанной окружностей правильного многоугольника.
Строить с помощью циркуля и линейки правильные треугольник, четырёхугольник, шестиугольник.
Выпускник получит возможность Применять изученные определения, теоремы и формулы к решению задач.
3. Декартовы координаты на плоскости
Ученик научится:
Описывать прямоугольную систему координат.
Формулировать: определение уравнения фигуры, необходимое и достаточное условия параллельности двух прямых.
Записывать и доказывать формулы расстояния между двумя точками, координат середины отрезка.
Выводить уравнение окружности, общее уравнение прямой, уравнение прямой с угловым коэффициентом.
Доказывать необходимое и достаточное условие параллельности двух прямых.
Применять изученные определения, теоремы и формулы к решению задач
Выпускник получит возможность
Применять изученные определения, теоремы и формулы к решению задач; овладеть координатным методом решения задач на вычисление и доказательство;
приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;
приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисление и доказательство».
4. Векторы.
Ученик научится:
Описывать
понятия векторных и скалярных величин. Иллюстрировать понятие вектора.
Формулировать:
определения: модуля вектора, коллинеарных векторов, равных векторов, координат вектора, суммы векторов, разности векторов, противоположных векторов, умножения вектора на число, скалярного произведения векторов;
свойства: равных векторов, координат равных векторов, сложения векторов, координат вектора суммы и вектора разности двух векторов, коллинеарных векторов, умножения вектора на число, скалярного произведения двух векторов, перпендикулярных векторов.
Доказывать теоремы: о нахождении координат вектора, о координатах суммы и разности векторов, об условии коллинеарности двух векторов, о нахождении скалярного произведения двух векторов, об условии перпендикулярности.
Находить косинус угла между двумя векторами.
Применять изученные определения, теоремы и формулы к решению задач
Выпускник получит возможность
Применять изученные определения, теоремы и формулы к решению задач;
овладеть векторным методом для решения задач на вычисление и доказательство;
приобрести опыт выполнения проектов на тему «Применение векторного метода при решении задач на вычисление и доказательство».
5. Геометрические преобразования
Ученик научится:
Приводить примеры преобразования фигур.
Описывать преобразования фигур: параллельный перенос, осевая симметрия, центральная симметрия, поворот, гомотетия, подобие.
Формулировать:
определения: движения; равных фигур; точек, симметричных относительно прямой; точек, симметричных относительно точки; фигуры, имеющей ось симметрии; фигуры, имеющей центр симметрии; подобных фигур;
свойства: движения, параллельного переноса, осевой симметрии, центральной симметрии, поворота, гомотетии.
Доказывать теоремы: о свойствах параллельного переноса, осевой симметрии, центральной симметрии, поворота, гомотетии, об отношении площадей подобных треугольников.
Выпускник получит возможность:
Применять изученные определения, теоремы и формулы к решению задач; приобрести опыт выполнения проектов по темам: «Геометрические преобразования на плоскости», «Построение отрезков по формуле», приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;