Файл: В.М. Волков Математика. Контрольные работы №1, 2, 3 и методические указания к ним для студентов-заочников инженерно-технических спецальностей.pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 03.06.2024
Просмотров: 105
Скачиваний: 0
|
|
x1 − 3x2 + 4x3 − x4 =1 |
|
31. |
7 x1 |
+ 3x2 − 5x3 + 5x4 =10 |
|
|
|
2x1 + 2x2 − 3x3 + 2x4 = 3 |
|
|
|
||
|
|
x1 − x2 + x3 − 2x4 =1 |
|
33. |
|
x1 − x2 + 2x3 − x4 = 2 |
|
|
|
|
− 5x2 + 8x3 − 7 x4 =1 |
|
5x1 |
||
|
4x1 + 2x2 + x3 = 7 |
||
|
|
x1 − x2 + x3 = −2 |
|
35. |
|
||
|
|
+ 3x2 − 3x3 =11 |
|
|
2x1 |
||
|
|
4x1 + x2 − x3 = 7 |
|
|
|
||
|
3x1 − 2x2 + x3 − 4x4 = 3 |
||
37. |
2x1 |
− 3x2 − 2x3 − x4 = 0 |
|
|
|
|
− x2 + 4x3 − 9x4 = 6 |
|
4x1 |
3x1 − 2x2 + x3 − x4 = 0
39.3x1 − 2x2 − x3 + x4 =1x1 − x2 + 2x3 + 5x4 = 3
|
2x1 + x2 − x3 − x4 + x5 =1 |
|||
|
|
x1 − x2 |
+ x3 + x4 − 2x5 = 0 |
|
41. |
|
|||
|
|
+ 3x2 |
− 3x3 − 3x4 + 4x5 = 2 |
|
|
3x1 |
|||
|
|
|
+ 5x2 |
− 5x3 − 5x4 + 7 x5 = 3 |
|
4x1 |
|||
|
x1 + x2 + x3 = 3 |
|||
|
|
+ x2 − |
3x3 = −1 |
|
43. |
x1 |
|||
|
|
+ x2 − 2x3 =1 |
||
|
2x1 |
|||
|
|
+ 2x2 − 3x3 =1 |
||
|
x1 |
|||
|
2x1 − 3x2 − x3 + 2x4 = 3 |
|||
45. 3x1 |
+ 5x2 |
+ 9x3 − 4x4 = −8 |
||
|
|
|
− 3x2 |
+ 5x3 + 7 x4 =14 |
|
4x1 |
x1 − 3x2 − 4 x3 + x4 = 2
47.5x1 − 8x2 − 2x3 + 8x4 = 3− 2x1 − x2 −10x3 − 5x4 = 3
|
4x1 + 2x2 + x3 = 7 |
|
|
|
x1 − x2 + x3 = −2 |
32. |
|
|
|
|
|
|
2x1 + 3x2 − 3x3 =11 |
|
|
|
4x1 + x2 − x3 = 7 |
|
|
|
|
|
x1 + 4x2 − 3x3 + 6x4 = 0 |
34. |
|
2x1 + 5x2 − x3 − 2x4 =1 |
|
|
|
|
x1 + 7 x2 −10x3 + 20x4 = 3 |
|
|
x1 + 2x2 + 3 x3 = 6 |
|
|
|
2x1 − 3x2 + 4x3 = 9 |
36. |
|
|
|
|
|
|
3x1 + 4x2 + 5x3 =12 |
|
|
|
x1 − x2 − x3 = −1 |
|
|
3x1 + 2x2 − 3x3 − 4x4 =1
38.2x1 + 3x2 − 2x3 + 3x4 = 24x1 + 2x2 − 3x3 + 2x4 = 3
x1 −3x2 −4x3 + x4 = 2
40.5x1 −8x2 −2x3 +8x4 =12−2x1 − x2 −10x3 −5x4 = −6
x1 − 2x2 − 3x3 = −3
x + 3x − 5x = 0
42.1 2 3
− 4x2 + x3 = 33x1 + x2 −13x3 = −6x1 +
|
x1 + 2x2 + 3x3 = −1 |
|
|
|
2x1 − x2 + x3 = −2 |
44. |
|
|
|
x1 − 3x2 − 2x3 = 3 |
|
|
|
|
|
|
|
|
5x1 + 5x2 +16x3 = −5 |
|
|
|
x1 + 2x2 − 3 x3 + 4x4 = 7 |
46. |
2x1 + 4x2 + 5x3 − x4 = 2 |
|
|
|
|
|
5x1 +10x2 + 7 x3 + 2x4 =11 |
x1 + 7 x2 + 4 x3 + 3x4 =1
48.3x1 + x2 + 7 x3 + x4 = 55x1 − 5x2 +10x3 − x4 = 3
|
5x1 − x2 + 2 x3 + x4 = 7 |
|||
49. |
2x1 |
+ x2 |
+ 4x3 − 2x4 =1 |
|
|
|
|
|
− 6x3 + 5x4 = 0 |
|
x1 − 3x2 |
|||
|
x1 + 2x2 + 3 x3 = 6 |
|||
|
|
2x1 |
− 3x2 + x3 = 0 |
|
51. |
|
|||
|
|
− 2x2 + 4x3 = 5 |
||
|
3x1 |
|||
|
|
x1 |
− x2 |
+ 3x3 = 3 |
|
|
−5x2 +10x3 − x4 =1
53.3x1 + x2 + 7 x3 + x4 = 3x1 + 7 x2 + 4x3 + 3x4 = 55x1
|
3x1 − x2 + 2x3 = 5 |
||
|
|
2x1 − x2 − x3 |
= 2 |
55. |
|
||
|
|
|
|
|
4x1 − 2x2 − 2x3 |
= −3 |
|
|
|
5x1 − 2x2 + x3 |
= 7 |
|
|
x1 + 3x2 − x3 − 2x4 =1
57.2x1 + 5x2 − 8x3 − 5x4 = 2x1 + 4x2 + 5x3 + x4 = 3
5x1 − 3x2 + 4x3 + 2x4 = 3
3x1 + 3x4 = 2
x1 + 7 x2 − 4x4 =12x2 − x3 +6x3 +59.
|
x1 + x2 − 3x3 − x4 = 0 |
||
50. |
|
x1 |
+ x2 − x3 + 2x4 − x5 =1 |
|
|
|
+ 2x2 + x3 − x4 + 3x5 = 0 |
|
2x1 |
||
|
x1 + 2x2 − 4x3 =1 |
||
|
|
2x1 + x2 − 5x3 =1 |
|
52. |
|
||
|
x1 |
− x2 − x3 = −2 |
|
|
|
||
|
|
|
+ 5x2 −13x3 =1 |
|
4x1 |
||
|
x1 + 8x2 + 6x3 − 6x4 = 0 |
||
54. |
|
2x1 − x2 − x3 + 4x4 =1 |
|
|
|
|
+ 5x2 + 3x3 + 6x4 = 3 |
|
7 x1 |
||
|
3x1 + 2x2 − x3 =1 |
||
|
|
x1 |
+ 3x2 + 2x3 = 5 |
56. |
|
||
|
|
+ 8x2 + 3x3 =11 |
|
|
5x1 |
||
|
|
x1 |
+ x2 =1 |
|
|
||
|
3x1 + 5x2 − x3 + 2x4 = 3 |
||
58. 2x1 |
+ 4x2 − x3 + 3x4 = 5 |
||
|
|
|
+ 3x2 − x3 + 4x4 = 7 |
|
x1 |
||
|
x1 + x2 − 3x3 − 2x4 =1 |
||
60. |
|
2x1 − 3x2 + x3 − x4 = 7 |
|
|
|
|
− x2 − 5x3 + 3x4 = 9 |
|
4x1 |
Элементы векторной алгебры и аналитической геометрии
61-90. |
Даны четыре вектора a , b , c , e . Показать, что векторы |
||||||||
a , |
b , |
c |
образуют |
базис, и найти координаты вектора e в этом |
|||||
базисе. |
|
|
|
|
|
|
|
|
|
61. |
a ={1, |
1, |
1}; b ={1, |
1, |
2}; c ={1, |
2, |
3}; e ={6, 9, |
14}. |
|
62. |
a ={6, |
4, |
3}; b ={3, |
3, |
2}; c ={8, |
1, |
3}; e ={−1, |
4, 1}. |
63. |
a ={4, |
− 5, |
2}; b ={2, |
|
− 2, |
1}; c ={2, |
|
−1, |
0}; e ={2, |
− 5, |
3}. |
||||||||
64. |
a ={2, |
− 3, |
1}; b ={3, |
|
− 3, |
1}; c ={2, |
|
−1, |
2}; e ={6, |
− 8, |
1}. |
|
|||||||
65. |
a ={4, |
5, |
2}; b ={3, |
0, |
1}; c ={1, |
4, |
|
2}; e ={5, |
7, |
8}. |
|
|
|
||||||
66. a ={2, − 3, |
1}; b ={1, |
5, |
− 4}; c ={4, |
1, |
− 3}; e ={6, |
−15, |
7}. |
||||||||||||
67. |
a ={3, |
− 5, |
2}; b ={4, |
|
5, |
1}; c ={− 3, |
|
0, |
− 4}; e ={− 4, |
|
5, |
16}. |
|||||||
68. |
a ={− 2, |
3, |
5}; b ={1, |
|
− 3, |
4}; c ={7, |
|
8, |
1}; e ={1, |
20, |
1}. |
|
|||||||
69. |
a ={2, |
1, |
3}; b ={− 4, |
|
− 2, |
−1}; c ={3, |
|
4, |
5}; e ={1, |
3, |
2}. |
|
|||||||
70. |
a ={1, |
3, |
5}; b ={0, |
2, |
|
0}; c ={5, |
7, |
|
9}; e ={0, |
4, |
16}. |
|
|
||||||
71. |
a ={2, |
4, |
6}; b ={1, |
3, |
|
5}; c ={0, |
− 3, |
|
7}; e ={3, |
2, |
52}. |
|
|
||||||
72. |
a ={2, |
3, |
1}; b ={−1, |
2, |
− 2}; c ={1, |
2, |
1}; e ={2, |
− 2, |
1}. |
|
|||||||||
73. |
a ={4, |
3, |
−1}; b ={5, |
|
0, |
4}; c ={2, |
1, |
|
2}; e ={0, |
12, |
− 6}. |
|
|||||||
74. |
a ={3, |
4, |
− 3}; b ={− 5, |
|
5, |
0}; c ={2, |
|
1, |
− 4}; e ={8, |
−16, |
17}. |
||||||||
75. |
a ={1, |
2, |
1}; b ={2, |
−1, |
3}; c ={3, |
−1, |
4}; e ={5, |
1, |
6}. |
|
|
||||||||
76. |
a ={− 2, |
1, |
7}; b ={3, |
|
− 3, |
8}; c ={5, |
|
4, |
−1}; e ={18, |
25, |
1}. |
||||||||
77. |
a ={1, |
0, |
5}; b ={3, |
2, |
|
7}; c ={5, |
0, |
|
9}; e ={− 4, |
2, |
−12}. |
|
|||||||
78. |
a ={2, |
1, |
0}; b ={4, |
3, |
|
− 3}; c ={− 6, |
|
5, |
7}; e ={34, |
5, |
− 24}. |
||||||||
79. |
a ={2, |
3, |
5}; b ={1, |
7, |
|
2}; c ={1, |
− 6, |
|
1}; e ={7, |
−12, |
15}. |
|
|||||||
80. |
a ={4, |
4, |
2}; b ={7, |
2, |
1}; c ={1, |
1, |
4}; e ={5, |
10, |
19}. |
|
|
||||||||
81. |
a ={2, |
3, |
3}; b ={−1, |
|
4, |
− 2}; c ={−1, |
|
− 2, 4}; e ={4, |
11, |
11}. |
|||||||||
82. |
a ={1, |
2, |
4}; b ={1, |
−1, |
1}; c ={2, |
2, |
|
4}; e ={−1, |
− 4, |
− 2}. |
|
||||||||
83. |
a ={3, |
2, |
2}; b ={2, |
3, |
1}; c ={1, |
1, |
|
3}; e ={5, |
1, |
11}. |
|
|
|
||||||
84. |
a ={2, |
1, |
3}; b ={− 4, |
|
− 2, |
−1}; c ={3, |
|
4, |
5}; e ={1, |
3, |
2}. |
|
|||||||
85. |
a ={1, |
2, |
1}; b ={−1, |
2, |
−2}; c ={2, |
3, |
1}; e ={2, |
−2, 1}. |
|||||||||||
86. |
a ={1, |
2, |
1}; b ={2, |
−1, |
3}; c ={3, |
−1, |
4}; e ={5, |
1, |
6}. |
||||||||||
87. |
a ={3, |
− 2, |
1}; b ={−1, |
1, |
− 2}; c ={2, |
1, |
− 3}; e ={11, |
− 6, |
5}. |
||||||||||
88. |
a ={2, |
1, |
0}; b ={1, |
−1, |
2}; c ={2, |
2, |
|
−1}; e ={3, |
7, |
− 7}. |
|
||||||||
89. |
a ={3, |
4, |
5}; b ={− 3, |
|
− 5, |
− 6}; c ={2, |
|
2, |
4}; e ={2, |
1, |
3}. |
|
|||||||
90. |
a ={3, |
2, |
4}; b ={2, |
4, |
− 3}; c ={− 4, |
|
− 5, |
2}; e ={8, |
11, |
1}. |
|
91-120. Даны координаты вершин пирамиды А1 А2 А3 А4 . Найти:
1)длину ребра А1 А2 ;
2)угол между ребрами А1 А2 и А1 А4 ;
3) |
угол между ребром А1 А4 и гранью А1 А2 А3 ; |
4) |
площадь грани А1 А2 А3 ; |
5)объем пирамиды;
6)уравнение прямой А1 А2 ;
7) уравнение плоскости |
|
А1 А2 А3 ; |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
8) уравнение высоты, опущенной из вершины А4 |
на грань |
А1 А2 А3 . |
|||||||||||||||||||||||
Сделать чертеж. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
91. |
А1 (1, |
3, |
0), |
|
А2 (3, |
−1, |
|
4), |
А3 (− 2, |
|
5, |
6), |
|
А4 (0, |
4, |
− 2). |
|
||||||||
92. |
А1 (3, |
1, |
4), |
|
А2 (−1, |
|
6, |
|
1), |
А3 (−1, |
|
1, |
6), |
|
А4 (0, 4, |
−1). |
|
||||||||
93. |
А1 (− 4, |
− 2, |
0), |
А2 (−1, |
|
− 2, 4), |
А3 (3, |
1, |
− 2), |
А4 (3, |
− 2, 1). |
||||||||||||||
94. |
А1 (3, |
2, |
− 3), |
А2 (5, 1, |
|
−1), |
А3 (2, |
|
−1, |
0), |
А4 (1, |
− 2, |
1). |
||||||||||||
95. |
А1 (1, |
2, |
1), |
|
А2 (3, |
−1, |
|
7), |
А3 (0, |
− 3, |
5), |
|
А4 (7, |
4, |
− 2). |
|
|||||||||
96. |
А1 (3, |
3, |
9), |
|
А2 (6, 9, |
1), |
А3 (1, 7, |
3), |
А4 (8, |
5, |
8). |
|
|
|
|||||||||||
97. |
А1 (2, |
0, |
3), |
|
А2 (5, 0, |
7), |
А3 (−1, |
− 2, |
2), |
А4 (3, |
− 2, |
1). |
|
||||||||||||
98. |
А1 (3, |
3, |
−1), |
А2 (2, 5, |
|
1), |
А3 (3, |
9, |
4), |
А4 (−1, |
0, |
−1). |
|
||||||||||||
99. |
А1 (3, |
5, |
4), |
|
А2 (5, 8, |
3), |
А3 (1, |
9, |
9), |
А4 (6, |
4, |
8). |
|
|
|
||||||||||
100. |
А1 (2, |
8, |
0), |
А2 (−1, |
8, |
4), |
А3 (3, |
|
−1, |
2), |
А4 (5, |
6, |
− 6). |
||||||||||||
101. |
А1 (3, |
−1, |
− 4), |
А2 (−1, |
5, |
− 2), |
|
А3 (0, |
3, |
|
5), А4 (1, |
1, |
− 3). |
||||||||||||
102. |
А1 (2, |
4, |
3), А2 (7, 6, 3), |
А3 (4, |
9, |
3), |
А4 (3, |
6, 7). |
|
|
|||||||||||||||
103. А1 (−1, − 3, |
− 4), А2 (3, |
−1, |
0), |
А3 (0, |
−1, |
− 4), А4 (1, |
3, |
−1). |
|||||||||||||||||
104. |
А1 (0, |
2, |
− 4), |
А2 (− 3, |
|
2, |
0), |
А3 (1, |
|
2, |
2), |
А4 (− 4, |
6, |
− 2). |
|||||||||||
105. |
А1 (9, |
5, |
5), |
А2 (− 3, |
7, |
1), |
А3 (5, |
|
7, |
8), |
|
А4 (6, |
9, |
2). |
|
||||||||||
106. |
А1 (− 2, |
0, |
2), |
А2 (0, |
3, |
8), |
А3 (1, |
|
2, |
0), |
|
А4 (− 4, |
2, |
3). |
|
||||||||||
107. |
А1 (3, |
5, |
0), |
А2 (6, 5, |
|
4), |
А3 (2, |
6, |
1), |
А4 (9, 5, |
0). |
|
|
||||||||||||
108. |
А1 (0, |
7, |
1), |
А2 (4, 1, |
5), |
А3 (4, 6, |
|
3), |
А4 (3, 9, |
8). |
|
|
|||||||||||||
109. |
А1 (2, |
1, |
− 6), |
А2 (4, |
2, |
− 4), |
А3 (0, |
|
1, |
− 5), |
А4 (2, |
1, |
3). |
||||||||||||
110. |
А1 (5, |
− 4, |
3), |
А2 (5, |
−1, |
−1), |
А3 (5, |
2, |
2), А4 (6, |
− 2, |
5). |
||||||||||||||
111. |
А1 (5, |
5, |
4), |
А2 (3, 8, |
|
4), |
А3 (3, |
5, |
10), |
А4 (5, 8, |
2). |
|
|||||||||||||
112. |
А1 (6, |
1, |
1), |
А2 (4, |
6, |
6), |
А3 (4, |
2, |
|
0), |
А4 (1, |
2, |
6). |
|
|