Файл: Antsiferov V.V., Smirnov G.I. Physics of solid-state lasers (ISBN 1898326177) (CISP, 2005)(179s).pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 28.06.2024
Просмотров: 422
Скачиваний: 0
Physics of Solid-State Lasers
46 V.S. Gulev, et al, Kvant. Elektronika, 14, No.1990 (1987).
47 V.V. Antsiferov and G.I. Smirnov, Preprint No.98-97, IYaF SO RAN, Novosibirsk (1998).
48 A.A. Manenkov and A.M. Prokhorov, UFN, 148, No.179 (1986). 49 A.A. Mak, et al, Nd glass lasers, Nauka, Moscow (1990).
50 S. Basu, et al, IEEE J. Quant. Electron., 22, No.2052 (1986).
51 J.C. Almasi and W.S. Martin, US Patent No.3.631.362, H01S 3/08 (1971). 52 W.S. Martin and I.P. Chernoch, US Patent No.3.633.126 H01S 3/08 (1972). 53 Q. Lu, et al, Opt. Comm., 99, No.201 (1993).
Chapter 6
1S.G. Rautian, et al, Nonlinear resonance in spectra of atoms and molecules, Nauka, Novosibirsk (1979).
2V.V. Antsiferov and G.I. Smirnov, Physics of coherent radiation processes in plasma, NGTU, Novosibirsk (1995).
3A.M. Samson, et al, Self-oscillations in lasers, Nauka i Tekhnika, Minsk (1990).
Chapter 7
1V.V. Antsiferov, et al, Pis'ma ZhTF, 21, No.43 (1995).
2S.V. Kalinin, et al, FTT, 37, No.2090 (1995).
3Yu.L. Klimontovich, Statistical physics, Nauka, Moscow (1982).
4G. Haken, Synergetics, Mir, Moscow (1985).
5Yu.L. Klimontovich, UFN, 164, No.811 (1994).
6S.M. Rymov, Introduction into statistical radiophysics, Nauka, Moscow (1966).
7B.B. Kadomtsev, UFN, 164, No.449 (1994).
8G.I. Smirnov and G.G. Telegin, Fiz. Plazmy, 17, No.253 (1991).
9A.P. Kazantsev and G.I. Surdutovich, ZhETF, 56, No.245 (1970).
10A.P. Kazantsev and G.I. Surdutovich, ZhETF, 61, No.1801 (1971).
11W. Feller, Ann. Math., 54, No.103 (1951).
164
References
Index
A |
|
|
|
|
|
|
|
Alexandrite |
26 |
|
|
|
|
|
|
alexandrite laser |
30 |
|
|
|
|
||
aluminium–yttrium garnet |
|
125, |
142 |
||||
Archard–Taylor polarisation prism |
110 |
||||||
Archard–Taylor prism 86 |
|
|
|
||||
B |
|
|
|
|
|
|
|
beryllium hexa-aluminate |
126 |
|
|
||||
Bohr frequency |
132 |
|
|
|
|
||
Brewster angle |
2, |
26 |
|
|
|
|
|
C |
|
|
|
|
|
|
|
compensated phase |
|
|
|
|
|
||
modulation |
4, |
14, 49 |
|
|
|||
concentration decay of |
|
|
|
|
|||
luminescence 48, |
120 |
|
|
||||
constant of polarisation relaxation |
132 |
||||||
Coulomb interaction |
45 |
|
|
|
|
||
cross-section of induced transition |
90 |
||||||
cryptocyanine |
112 |
|
|
|
|
||
D |
|
|
|
|
|
|
|
density matrix |
|
130 |
|
|
|
|
|
dipole–dipole interaction |
48 |
|
|
||||
discrimination of modes |
28 |
|
|
||||
Doppler broadening |
98 |
|
|
|
|
||
dye centres |
37 |
|
|
|
|
|
|
dynamic Stark effect |
82, |
141 |
|
|
|||
E |
|
|
|
|
|
|
|
efficiency factor |
116 |
|
|
|
|
||
Einstein coefficient |
13, |
141 |
|
|
|||
Einstein probability |
132 |
|
|
|
|
||
emerald crystal |
32 |
|
|
|
|
|
|
emerald laser |
32 |
|
|
|
|
|
|
F |
|
|
|
|
|
|
|
Fabry–Perot interferometer |
3, |
50 |
|
||||
Fabry–Perot selector-etalon |
51 |
|
Fabry–Yudin method 60
Faraday cell |
7 |
flux method |
33 |
Focker–Planck equation 146 Frenel 4
Frenel reflection 93
G
gadolinium-scandium–gallium
garnet |
62 |
|
gain factor |
92 |
|
gallium garnet |
37 |
|
giant pulse |
144 |
|
H |
|
|
hexa-aluminate |
70 |
|
Hund rule |
1 |
|
hydrothermal method 33
I
inversion |
12 |
|
|
|
|
K |
|
|
|
|
|
Kerr effect |
102 |
|
|
|
|
L |
|
|
|
|
|
Langevin equation |
145 |
|
|||
lanthanum beryllate |
67 |
|
|||
lasing parameter |
154 |
|
|||
lasing spike |
8 |
|
|
|
|
Li–Nd–La phosphate glass |
51 |
||||
lithium–yttrium tetrafluoride |
126 |
||||
M |
|
|
|
|
|
m–n transition |
132 |
|
|
||
Mach–Zender interferogram |
60 |
||||
Maxwell equations |
133 |
|
|||
N |
|
|
|
|
|
Nd ions |
45 |
|
|
|
|
165
|
|
Physics of Solid-State Lasers |
|
Nd:BLN laser |
69 |
radiation density |
143 |
Nd:GALB laser |
72 |
Rb–Nd tungstate |
78 |
Nd:KYW 76 |
|
regime of the second |
Nd:YAG crystal |
52 |
|
|
threshold |
103 |
|
||||||
Nd:YAG laser |
53 |
|
|
ruby laser |
|
10, |
111 |
|
|
|
||
Neuman equation |
130 |
|
|
S |
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
O |
|
|
|
|
|
Schrödinger equation |
130 |
|
||||
|
|
|
|
|
|
|
||||||
orbital moment 1 |
|
|
self-activated crystals |
77 |
|
|||||||
P |
|
|
|
|
|
sheelite |
40 |
|
|
|
|
|
|
|
|
|
|
silicate glass |
51 |
|
|
|
|||
|
|
|
|
|
|
|
|
|
||||
passive Q-factor modulation |
83 |
Stark components |
46 |
|
|
|||||||
passive Q-modulation |
83 |
|
Stark effect |
1 |
|
|
|
|
||||
perovskite |
126 |
|
|
|
Stark splitting |
45 |
|
|
|
|||
phosphate glass |
51 |
|
|
Stark sublevel |
56 |
|
|
|
||||
photoelasticity coefficient |
60 |
Stark sublevels |
45 |
|
|
|
||||||
Pockels cell |
86 |
|
|
|
supershort radiation pulses |
100 |
||||||
polarisation vector 133 |
|
T |
|
|
|
|
|
|
||||
potassium–gadolinium tungstate |
|
|
|
|
|
|
||||||
73 |
|
|
|
|
|
|
||||||
potassium–niobium–gallium |
|
T 69 |
|
|
|
|
|
|
||||
garnet |
125 |
|
|
tensor of dielectric permittivity 134 |
||||||||
potassium-scandium tungstate |
thermal drift |
5 |
|
|
|
|||||||
crystal |
41 |
|
|
thermal lens |
5 |
|
|
|
||||
Q |
|
|
|
|
|
threshold pumping energy |
4 |
|||||
|
|
|
|
|
tungstate |
40 |
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|||
Q-factor |
85 |
|
|
|
|
Y |
|
|
|
|
|
|
quantron |
4, |
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
quasistationary lasing |
21 |
|
yttrium–erbium–aluminium garnet 124 |
|||||||||
R |
|
|
|
|
|
Z |
|
|
|
|
|
|
Raby frequency |
141 |
|
|
Zeeman effect |
98 |
|
|
|
166