Файл: Ufimtsev P. Fundamentals of the physical theory of diffraction (Wiley 2007)(348s) PEo .pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 952

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Problems 69

Consider these two examples:

(a) α = 270, ϕ0 = 45, 0 ≤ ϕ α, (b) α = 360, ϕ0 = 45, 0 ≤ ϕ α.

Prove analytically that F(π ± ϕ0, ϕ0, α) = 1. Formulate your conclusion regarding δf (0).

3.2 Analyze the accuracy of the PO approximation. Compute and plot the relative error

δg(0), ϕ0, α) = |G(ϕ, ϕ0, α) − 1| · 100%,

where

G(ϕ, ϕ0, α) = g(0), ϕ0)/g(ϕ, ϕ0, α). Consider these two examples:

(a) α = 270, ϕ0 = 45, 0 ≤ ϕ α, (b) α = 360, ϕ0 = 45, 0 ≤ ϕ α.

Prove analytically that G(π ± ϕ0, ϕ0, α) = 1. Formulate your conclusion regarding δg(0).

3.3The Sommerfeld function f (ϕ, ϕ0, α) satisfies the reciprocity principle, but its PO approximation f (0), ϕ0) does not. Analyze the PO deviations from the reciprocity principle. Compute the relative level of these deviations,

df , ϕ0) = |F(ϕ, ϕ0, α) F(ϕ0, ϕ, α)| · 100%,

where

F(ϕ, ϕ0, α) = f (0), ϕ0)/f (ϕ, ϕ0, α).

Investigate the case with α = 350, set ϕ = ϕ0 = 70. Prepare a (6 × 6) square table with numerical data for the deviations df . Formulate your conclusion.

3.4The Sommerfeld function g(ϕ, ϕ0, α) satisfies the reciprocity principle, but its PO approximation g(0), ϕ0) does not. Analyze the PO deviations from the reciprocity principle. Compute the relative level of these deviations,

dg, ϕ0) = |G(ϕ, ϕ0, α) G(ϕ0, ϕ, α)| · 100%,

where

G(ϕ, ϕ0, α) = g(0), ϕ0, α)/g(ϕ, ϕ0, α).

Investigate the case with α = 350, set ϕ = ϕ0 = 70. Prepare a (6 × 6) square table with numerical data for the deviations dg. Formulate your conclusion.

TEAM LinG


TEAM LinG

= Ez(1)
= Hz(1)

Chapter 4

Wedge Diffraction:

Radiation by the Nonuniform

Component of Surface Sources

The relationships us(1) and uh(1) exist between the acoustic and electromagnetic fields generated by the nonuniform sources j(1). An exception exists for an oblique incidence (see Section 4.3).

We have now reached the moment when we can construct the integral and asymptotic representations for the field radiated by the nonuniform component of the surface sources, which are induced at the wedge by the incident wave. The exact expressions for the total field generated around the wedge have been derived in Chapter 2. The Physical Optics (PO) part of this field (which is generated by the uniform component of the surface sources) has been studied in Chapter 3. The contribution to the diffracted field by the nonuniform component is the difference between the exact total field and its PO part. This contribution is investigated in this chapter.

4.1INTEGRALS AND ASYMPTOTICS

According to the exact solution (see Equations (2.40), (2.41), and (2.52) to (2.57)), the total field around the wedge consists of the diffracted and geometrical optics parts

us,ht = us,hd + us,hgo ,

(4.1)

where us,hd is described by the functions v(kr, ψ ), and us,hgo is the sum of the incident and reflected plane waves. Equations (3.35) and (3.36), (3.37) and (3.38), (3.41) to

(3.44), and (3.45) to (3.48) represent the scattered field in the PO approximation.

Fundamentals of the Physical Theory of Diffraction. By Pyotr Ya. Ufimtsev

Copyright © 2007 John Wiley & Sons, Inc.

71

TEAM LinG


72 Chapter 4 Radiation by the Nonuniform Component of Surface Sources

By summation with the incident wave (3.1), these equations determine the PO part of the total field:

us,h(0)t = us,h(0)d + us,hgo ,

(4.2)

where us,h(0)d is the diffracted part of the field, which is described by functions vs,h± . The geometrical optics part us,hgo of the PO field is the same quantity as that in Equation (4.1).

The field (4.1) is generated by total surface source js,h = js,h(0) + js,h(1), consisting of the uniform and nonuniform components, and the PO field (4.2) is radiated only by the uniform component js,h(0). Therefore, the field created by the nonuniform component is the difference

us,h(1) = us,ht us,h(0)t = us,hd us,h(0)d.

(4.3)

In the case 0 < ϕ0 < α π , when only one face = 0) is illuminated, this field is determined by

(1)

vs+(kr, ϕ, ϕ0),

us

/u0 = v(kr, ϕ ϕ0) v(kr, ϕ + ϕ0) vs−(kr, ϕ, ϕ0),

and

 

(1)

vh+(kr, ϕ, ϕ0),

uh

/u0 = v(kr, ϕ ϕ0) + v(kr, ϕ + ϕ0) vh−(kr, ϕ, ϕ0),

with 0 ≤ ϕ < π with π < ϕ α,

(4.4)

with 0 ≤ ϕ < π with π < ϕ α.

(4.5)

In the case α π < ϕ0 < π , when both faces are illuminated, the field us,h(1) is determined as

us(1)/u0 = v(kr, ϕ ϕ0) v(kr, ϕ + ϕ0)

 

 

s

 

 

+

 

s

 

 

 

 

 

 

 

 

v+(kr, ϕ, ϕ0)

v(kr, α

ϕ, α

ϕ0),

ϕ < α

 

π

 

 

 

 

 

with 0

 

 

vs+(kr, ϕ, ϕ0)

+ vs+(kr, α

ϕ, α

ϕ0),

with α

π < ϕ < π

 

 

 

 

(kr, ϕ, ϕ0)

 

v

 

(kr, α

 

ϕ, α

 

ϕ0),

with π < ϕ

 

α,

 

 

v

 

+

 

 

 

 

 

s

 

 

 

s+

 

 

 

 

 

 

 

 

(4.6)

uh(1)/u0 = v(kr, ϕ ϕ0) + v(kr, ϕ + ϕ0)

 

 

 

 

 

 

 

 

 

v+(kr, ϕ, ϕ

)

+

v(kr, α

ϕ, α

ϕ

),

ϕ < α

π

 

 

 

 

 

with 0

 

 

 

h

0

 

 

 

h

 

ϕ, α

0

 

with α

 

 

 

 

 

vh+(kr, ϕ, ϕ0)

+ vh+(kr, α

ϕ0),

π < ϕ < π

 

h

 

 

+ h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v+(kr, α

 

ϕ, α

 

ϕ0),

with π < ϕ

 

α.

 

 

v(kr, ϕ, ϕ0)

 

 

 

 

 

(4.7)

The function v(kr, ψ ) is defined in Equation (2.51) and the functions vs,h± (kr, ϕ, ϕ0) in Equations (3.39) and (3.40) by the integrals in the complex plane

TEAM LinG


4.1 Integrals and Asymptotics 73

over the same contour D0 shown in Figure 2.6. Therefore, the field us,h(1) can be represented as the integral over the contour D0 with the integrand consisting of a linear combination of the integrands related to functions v and vs,h± :

us,h(1) = D0

Us,h, ϕ, ϕ0, ζ )eikr cos ζ dζ .

(4.8)

For the observation points far away from the edge (kr

1), this integral can

be asymptotically evaluated by the saddle point method (Copson, 1965; Murray,

 

 

 

 

 

 

 

 

 

iπ/4

 

ζ

 

 

 

 

 

 

2e

sin

1984). To do this, we first replace the integration variable ζ by s =

 

2 and

transform the integral to the form

 

 

 

 

 

 

 

 

 

u(1)

2ei π4 eikr

Us,h[α, ϕ, ϕ0, ζ (s)]

ekrs2 ds.

 

 

 

 

(4.9)

 

 

 

 

 

s,h

=

 

−∞

cos

ζ (s)/2

]

 

 

 

 

 

 

 

 

 

[

 

 

 

 

 

 

 

We then expand the integrand Us,h/ cos(ζ /2) into the Taylor series in the vicinity of the saddle point s = 0, retain only the first term in this series, and obtain the asymptotic expression

(1)

 

 

π

 

 

 

 

 

 

2

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

us,h

= 2ei 4 eikr Us,h, ϕ, ϕ0, 0)

 

−∞ ekrs ds + O −∞ ekrs s2 ds

(4.10)

or

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

eikr

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

us,h(1) = 2π ei 4

 

Us,h, ϕ, ϕ0, 0) + O)(kr)

2 * ,

(4.11)

 

 

 

kr

which holds under the condition kr

 

 

 

1.

 

 

 

 

 

 

 

 

 

 

Finally, one can rewrite the above expression (4.11) in terms of the functions f ,

g, f (0), g(0) introduced in Sections 2.4 and 3.3:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1)

u0 f

(1)

 

 

ei(kr+π/4)

 

 

 

 

 

 

us

 

 

 

, ϕ0, α)

 

 

 

 

,

 

(4.12)

 

 

 

 

 

 

 

2π kr

 

 

 

(1)

u0g

(1)

 

 

ei(kr+π/4)

 

 

 

 

 

 

 

 

uh

 

 

, ϕ0, α)

 

 

 

,

 

(4.13)

 

 

 

 

 

 

 

2π kr

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (1), ϕ0, α) = f (ϕ, ϕ0, α) f (0), ϕ0),

 

(4.14)

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g(1), ϕ0, α) = g(ϕ, ϕ0, α) g(0), ϕ0).

 

(4.15)

TEAM LinG


74 Chapter 4 Radiation by the Nonuniform Component of Surface Sources

Thus, the field generated by the nonuniform component js,h(1) represents by itself the cylindrical wave diverging from the edge of the wedge. This form of the field is a consequence of the fact that the nonuniform component js,h(1) concentrates near the edge. Just for this reason the quantity js,h(1) is sometimes called the fringe component. Approximations (4.12) and (4.13) reveal a ray structure of this part of the diffracted field and because of that they can be termed ray asymptotics.

The directivity patterns of the field (4.12) and (4.13) possess a wonderful property. In contrast to the functions f , g, f (0), g(0), which are singular at the geometrical optics boundaries, the functions f (1) and g(1) are finite there. It turns out that the singularities of functions f and g are totally cancelled by the singularities of functions f (0) and g(0), respectively. The following equations determine the finite values of functions f (1) and g(1) for these special directions.

For the direction ϕ = π ϕ0 (which is the boundary of the plane wave reflected from the face ϕ = 0, Fig. 2.7), the functions f (1) and g(1) have the values

f (1)

, =

 

 

 

 

1

sin

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

+g(1)

 

 

 

n

+

 

 

cot ϕ0

±

cos π

cos π 2ϕ0

2

 

 

 

 

 

n

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

when 0 < ϕ0 < α π , and

 

 

 

 

 

 

 

 

 

 

 

 

 

f (1)

, =

 

 

 

 

1

sin

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

+g(1)

 

 

n

+

 

 

cot ϕ0

±

cos π

cos π 2ϕ0

2

 

 

 

 

 

n

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sinϕ0)

 

 

 

 

 

cosϕ0) − cos+ ϕ0)

 

 

 

 

 

sin(α ϕ0)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

cosϕ0) − cos+ ϕ0)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1π

 

cot

 

(4.16)

 

 

2n

n

1

cot

π

2n

n

 

(4.17)

when α π < ϕ0 < π .

=

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the direction ϕ

π

ϕ

0

(which is the shadow boundary of the incident

 

 

 

 

 

 

 

 

(1)

and g

(1)

are determined by

 

wave, Fig. 2.7), the values of functions f

 

 

 

 

f (1)

 

 

 

 

 

1

sin

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

1

 

π

 

 

 

 

 

 

 

n

 

n

 

 

 

 

 

 

 

 

+g(1) , =

 

 

 

 

 

±

 

cot ϕ0

 

cot

 

(4.18)

cos

π

− cos

 

π + 2ϕ0

 

2

2n

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

when 0 < ϕ0 < π . The direction ϕ = π + ϕ0 under the condition α π < ϕ0 < π is inside the wedge and is not of interest.

In the case α π < ϕ0 < π , when both faces of the wedge are illuminated (Fig. 2.8), the functions f (1) and g(1) have the following values at the direction ϕ = 2α π ϕ0 (which is the boundary of the plane waves reflected from the

TEAM LinG