Файл: Ufimtsev P. Fundamentals of the physical theory of diffraction (Wiley 2007)(348s) PEo .pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 28.06.2024
Просмотров: 959
Скачиваний: 0
90 Chapter 5 |
First-Order Diffraction at Strips and Polygonal Cylinders |
|
|
|
|||||||||||||||||||||||||||||||||
where |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(φ, φ |
|
) |
= − |
cos[ka(sin φ0 − sin φ)] |
|
+ |
i |
sin[ka(sin φ0 − sin φ)] |
, |
|||||||||||||||||||||||||||
|
|
|
|
|
φ0 + φ |
|
|
|
|
|
|
|
φ0 − φ |
|
|
|
|||||||||||||||||||||
s |
|
|
0 |
|
|
cos |
|
|
|
|
|
|
sin |
|
|
|
|
||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
with |
− π/2 ≤ φ ≤ π/2, |
|
|
|
|
|
|
|
|
|
|
|
|
|
(5.35) |
||||||||||||||
|
(φ, φ |
|
) |
= |
cos[ka(sin φ0 − sin φ)] |
− |
i |
sin[ka(sin φ0 − sin φ)] |
, |
|
|
||||||||||||||||||||||||||
|
|
φ0 − φ |
|
|
|
|
|
φ0 + φ |
|
|
|
|
|
||||||||||||||||||||||||
s |
|
|
0 |
|
|
|
sin |
|
|
|
|
|
|
|
cos |
|
|
|
|
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
with π/2 ≤ φ ≤ 3π/2, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(5.36) |
|||||||||||||
and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(φ, φ |
|
) |
= |
cos[ka(sin φ0 − sin φ)] |
|
+ |
i |
sin[ka(sin φ0 − sin φ)] |
, |
|||||||||||||||||||||||||||
|
|
|
φ0 + φ |
|
|
φ0 − φ |
|
|
|||||||||||||||||||||||||||||
|
h |
|
|
0 |
|
|
|
cos |
|
|
|
|
|
|
sin |
|
|
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
with |
− π/2 ≤ φ ≤ π/2, |
|
|
|
|
|
|
|
|
|
|
|
|
|
(5.37) |
|||||||||||||
|
h |
(φ, φ |
0 |
) |
= |
cos[ka(sin φ0 − sin φ)] |
|
+ |
i |
sin[ka(sin φ0 − sin φ)] |
, |
||||||||||||||||||||||||||
|
φ0 − φ |
|
|
φ0 + φ |
|
||||||||||||||||||||||||||||||||
|
|
|
|
|
|
sin |
|
|
|
|
|
|
cos |
|
|
|
|
||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
with π/2 ≤ φ ≤ 3π/2. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(5.38) |
As can be seen, these functions (in contrast to functions (s,h0) exact zeros in the directions determined by Equation (5.22).
In the following we provide the explicit expressions of functions s,h for certain specific directions of observation. For the forward direction φ = φ0,
1
(5.39)
cos φ0
and |
|
|
|
|
||||
1 |
|
|
|
|
||||
h(φ0, φ0) = i2ka cos φ0 + |
|
|
|
|
, |
|
|
(5.40) |
cos φ0 |
||||||||
and for the specular direction φ = π − φ0, |
|
|
|
|
||||
1 |
|
|
|
|
||||
s(π − φ0, φ0) = i2ka cos φ0 − |
|
|
|
|
|
(5.41) |
||
cos φ0 |
||||||||
and |
|
|
|
|
||||
1 |
|
|
|
|||||
h(π − φ0, φ0) = −i2ka cos φ0 − |
|
. |
(5.42) |
|||||
cos φ0 |
||||||||
In addition, for the backscattering direction φ = π + φ0, |
|
|
|
|
||||
|
|
sin(2ka sin φ0) |
|
|||||
s(π + φ0, φ0) = − cos(2ka sin φ0) + i |
|
|
(5.43) |
|||||
|
sin φ0 |
TEAM LinG
5.1 Diffraction at a Strip |
91 |
and
h(π + φ0, φ0) = − cos(2ka sin φ0) − i |
sin(2ka sin φ0) |
. |
(5.44) |
sin φ0 |
In conformity with Equations (4.20) and (4.21), functions (5.39) to (5.42) are singular under the grazing incidence (φ0 = ±π/2).
A comparison with Equation (5.14) shows that the first term in Equations (5.39) and (5.40) is caused by the uniform component, and the second term by the nonuniform component of the surface sources. In view of Equation (5.16), this observation gives the impression that the field generated by the nonuniform component does not contribute to the total scattered power. An interesting question arises. How does it happen that the nonuniform component j(1) generates the field (5.23) and (5.24), but does not contribute to the total scattered power? The answer is the following. The field (5.23) and (5.24) does contribute to the total scattered field, but through the high-order edge waves generated due to multiple diffraction of the primary edge waves (5.34).
An additional comment is necessary on the field equations (5.28) and (5.29) and functions f and g involved in these equations. Functions f and g are singular in the forward (φ = φ0) and specular (φ = π − φ0) directions related to the geometrical optics boundaries of the incident and reflected rays. However, these singularities cancel each other in the field Equations (5.28) and (5.29) and provide finite values in these special directions, as is seen in Equations (5.39) to (5.42). This cancellation is due to the fact that the incident wave is a plane wave. Because of this, the geometrical optics boundaries related to the different edges of the strip are parallel to each other (Fig. 5.3) and merge in the far zone from the strip. This case represents an exception as compared to a more general situation when the source of the incident wave can be at a finite distance from the scattering object. For example, in the case of the cylindrical incident wave (Fig. 5.4), the shadow boundaries caused by the strip edges are not parallel and therefore the related singularities of functions f and g are separated in space and cannot cancel each other. In such a case, the traditional PTD procedure consists of the calculation of the fields generated separately by the uniform and nonuniform
Figure 5.4 Shadow boundaries caused by the strip edges in the field of the incident cylindrical wave. At these boundaries, functions f and g are singular: f = ∞ and g = ∞.
TEAM LinG
92 Chapter 5 First-Order Diffraction at Strips and Polygonal Cylinders
components of the scattering sources with the subsequent summation of these fields. Each of these fields is finite and hence their sum is finite as well.
5.1.3Numerical Analysis of the Scattered Field
The relationships us = Ez and uh = Hz exist between the acoustic and electromagnetic
fields for this problem.
In this section we present the numerical analysis of the scattered field by utilizing different approaches. Note that the geometry of the problem is shown in Figure 5.1. The soft (1.5) or hard (1.6) boundary conditions are imposed on the strip. The incident wave is the plane wave (5.1). The relationships us = Ez and uh = Hz show the equivalence between the acoustic and electromagnetic fields studied in this section. Equation (5.20) determines the bistatic scattering cross-section. The calculated quantity is the normalized scattering cross-section
σs,h |
|
|
(φ, φ ) |
|
2 |
|
|
|
kl2 |
= |
|
s,h kl |
0 |
|
, |
where l = 2a, |
(5.45) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
which is plotted in the decibel scale. For parameters ka and φ0 we take the values ka = 3π and φ0 = 45◦, that is, ϕ0 = π/4 rad. In this case, the strip width l = 2a equals 3λ and the application of the asymptotic theory is justified. The scattering cross-section is investigated in the directions π/2 ≤ φ ≤ 3π/2 around the strip. One should note that the function s is symmetrical with respect to the strip plane [ s(π − φ, φ0) =s(φ, φ0)], and the function h is anti-symmetrical [ h(π − φ, φ0) = − h(φ, φ0)]. That is why it is sufficient to calculate these functions only in the interval π/2 ≤ φ ≤ 3π/2.
Calculations are performed using the following approaches:
•The PO approximation with the functions (s,h0) given in Section 5.1.1;
•The first-order PTD approximation with the functions s,h presented in Section 5.1.2;
•The first-order TED approximation (Ufimtsev, 2003) with the functions
s |
(φ, |
φ0) = ˜ 1 |
0 |
) |
+ ˜ 1 |
( |
− |
α, |
− 0 |
|
(5.46) |
||
|
|
(α, α |
|
|
α ) |
||||||||
and |
|
|
φ0) = ˜ 1 |
|
|
+ ˜ 1 |
|
− |
|
, − 0 |
|
|
|
h |
(φ, |
0 |
) |
|
α |
), |
(5.47) |
||||||
|
(α, α |
( |
|
|
α |
TEAM LinG
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5.1 Diffraction at a Strip 93 |
||||||||||||||||||||
where |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
√ |
|
|
|
|
√ |
|
|
|
|
|
|
|
|
|
|
eiχ (α+α0) |
|
|
|
√ |
|
|
√ |
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||
|
(α, α |
) |
= |
1 − α |
1 − α0 |
+ |
1 − α |
1 + α0 |
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||
˜ 1 |
0 |
|
|
|
|
|
|
α + α0 |
|
|
|
|
|
− |
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
α + α0 |
|
|
|
+ |
|
|
|
− |
|
|
|
|
||||||||||||||||||||||||||||||||
|
|
|
× |
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
− |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||
|
|
|
|
|
|
1 |
− α |
ψ (q, α) |
|
|
|
|
|
1 + |
|
α0 |
ψ (q, |
|
α |
|
) |
|
|
eiq |
|
|
iχ (α |
|
α0) |
|
|||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||||||
|
|
|
+ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
)' |
|
|
− |
0 |
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
2Ds |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||
|
|
|
|
|
|
|
√1 |
− |
α |
ei2q |
|
|
|
|
|
1 |
|
|
|
|
|
|
α |
ψ (q, |
α |
|
|
)eiχ α0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||
|
|
|
− ' |
|
|
|
|
ψ (q, −α0)ψ (q, 1)eiq−iχ α0 |
* ψ (q, α)eiχ α , |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
1 + α0 |
(5.48) |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
√ |
|
|
√ |
|
|
|
|
|
|
eiχ (α+α0) |
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||
|
(α, α |
) |
|
|
|
1 + α |
1 + α0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||||
= − |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+ α + α0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||||
˜ 1 |
0 |
|
|
|
|
|
|
|
α + α0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||
|
|
|
× |
|
|
|
|
+ |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
− |
0 |
|
|
− |
|
− |
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
(1 |
|
|
|
α |
) |
|
|
1 + α |
ϕ(q, |
|
|
α |
|
) |
|
|
|
|
(1 |
|
|
|
|
|
α) |
|
|
|
1 |
− α0 |
ϕ(q, α) |
||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||||||
|
|
|
× eiq+iχ (α−α0) |
|
− |
|
1 |
|
ei2q -ϕ(q, α0)eiχ α0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
Dh |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
− ϕ(q, −α0)ϕ(q, 1)eiq−iχ α0 . ϕ(q, α)eiχ α . |
|
|
|
|
|
|
|
|
|
|
|
|
(5.49) |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In these expressions, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
α = sin φ, |
|
|
|
α0 = − sin φ0, |
|
|
|
|
|
|
|
χ = ka, |
|
|
|
|
q = 2χ = 2ka, |
(5.50) |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
ϕ(q, α) |
|
|
|
|
|
|
|
|
|
2 |
e−iπ/4e−iq(1+α) |
|
∞ |
|
|
|
|
|
|
eit2 dt, |
|
|
|
|
|
|
(5.51) |
|||||||||||||||||||||||||||||||||||||||||||
|
|
|
= √ |
|
|
√ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
π |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i |
|
|
|
|
|
|
∂ϕ(q, α) |
|
|
q(1+α) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||
|
|
|
ψ (q, α) = |
√ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(5.52) |
|||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
∂q |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2(1 + α) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ds = 1 − ψ 2(q, 1)ei2q, |
|
|
|
|
|
|
|
|
Dh = 1 − ϕ2(q, 1)ei2q. |
|
|
|
(5.53) |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The absolute error of the TED approximation (5.46) and (5.47) is equal to |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
where |
|
|
Qs,h(α, α0) = Q˜ s,h(α, α0) + Q˜ s,h(−α, −α0) |
|
|
|
|
|
|
|
|
|
(5.54) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Q˜ s(α, α0) = |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
O(q−1/2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(5.55) |
|||||||||||||||||||||||||||
and |
|
|
[1 + q(1 + α)][1 + q(1 − α0)] |
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
√ |
|
|
|
|
|
|
|
|
|
|
|
|
√ |
|
|
|
|
|
|
|
|
O(√ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+ |
|
|
α |
1 |
|
+ |
α0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||
|
|
|
Q˜ h |
(α, α |
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
q |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(5.56) |
||||||||||||||||||||||||||||||||||||
|
|
|
|
= [1 + q(1 + α)][1 + q(1 + α0)] |
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
TEAM LinG