Файл: Ufimtsev P. Fundamentals of the physical theory of diffraction (Wiley 2007)(348s) PEo .pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 881

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

14 Chapter 1 Basic Notions in Acoustic and Electromagnetic Diffraction Problems

scattered in all directions. In the PO approximation, the total power scattered from an acoustically soft object equals

Ptot

=

1

Re

 

( psc) (vtot

n)ds,

(1.38)

 

 

 

2

 

Sil

s

 

s

· ˆ

 

where

 

 

 

 

 

 

 

 

 

 

 

 

vstot · nˆ = 2

∂uinc

 

 

 

 

 

 

,

 

(1.39)

 

 

∂n

 

 

and in accordance with the boundary condition (1.5), pscs = −pinc = −iωρuinc. The incident wave in the vicinity of the scattering object can be approximated by the plane wave (Fig. 1.4)

Then

 

 

 

 

 

 

uinc = u0eikz.

 

 

(1.40)

 

 

 

 

 

 

 

 

 

 

 

 

vtot

n

2

∂uinc

=

2iku

 

eikz(z

n),

( psc)

=

iωρu eikz

(1.41)

∂n

 

s

· ˆ =

 

 

0

ˆ

· ˆ

s

0

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ptot = −kωρ|u0|2

Sil (zˆ · nˆ )ds = k2ZA|u0|2,

(1.42)

 

 

 

 

 

 

 

 

 

 

 

 

 

where A is the area of the object’s projection on the plane perpendicular to the direction of propagation or, in other words, the area of the shadow cross-section (Fig. 1.4). In view of Equation (1.25), the power flux density of the incident wave equals

inc

1

 

2

 

 

2

 

 

Pav

=

 

k

 

Z|u0

|

 

.

(1.43)

2

 

 

The total cross-section is defined by the ratio

 

 

 

 

σ tot = Ptot /Pavinc

 

(1.44)

and equals

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

σ tot = 2A.

 

 

 

(1.45)

 

 

 

 

 

 

 

 

 

 

This result is also valid for hard objects and for perfectly conducting objects, which scatter electromagnetic waves. It can be easily verified for hard objects. Indeed in

TEAM LinG


 

 

 

 

 

 

 

1.3 Physical Optics 15

this case,

 

 

 

 

 

 

 

 

Ptot

=

1

Re

 

( ptot )

(vsc

n)ds

(1.46)

 

 

 

2

 

Sil

h

h

· ˆ

 

and

 

 

 

 

 

 

 

 

phtot = 2pinc = 2i ωρu0eikz,

 

 

(vhsc · nˆ ) = −(vinc · nˆ ) = −iku0eikz(zˆ · nˆ ).

(1.47)

The substitution of Equation (1.47) into (1.46) leads to Equations (1.42) and to (1.45).

1.3.3Optical Theorem

There is a specific connection between the total scattering cross-section and the far scattered field in the shadow/forward direction. In the PO approximation, the far-field expressions (1.18) and (1.19) take the form

PO

 

PO eikR

 

 

 

PO

 

PO eikR

 

 

us

= u0

s

 

 

 

,

 

 

uh

 

= u0 h

 

 

,

(1.48)

 

R

 

 

 

 

R

where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sPO = −

1

 

 

 

 

∂uinc

eikr cos ds,

 

(1.49)

 

 

 

 

 

 

2π u0

Sil

 

 

∂n

 

PO

= −

ik

 

 

 

uinceikr

cos (m

·

n)ds

 

(1.50)

2π u0 Sil

 

 

h

 

 

 

 

 

ˆ

ˆ

 

 

with cos defined in Equation (1.13). The incident wave (1.40) propagates in the

z-direction. For the observation point in the forward direction, we have ϑ = 0, cos = cos ϑ , mˆ = zˆ, r cos ϑ = z , and

∂uinc

 

inc

· nˆ = iku0e

ikz

· nˆ)

 

 

 

 

 

= u

 

(zˆ

 

 

(1.51)

 

∂n

 

 

 

and also

 

 

 

 

 

 

 

 

 

 

sPO= 0) = hPO=

0) = −

ik

Sil (zˆ · nˆ)ds =

ik

 

 

 

 

A,

(1.52)

2π

2π

where A is the area of the shadow cross-section (Fig. 1.4). Comparison of Equation (1.52) with Equation (1.45) shows that

σ tot =

4π

 

k Im = 0).

(1.53)

This equation is well known as the Optical Theorem (Born and Wolf, 1980).

TEAM LinG


16 Chapter 1 Basic Notions in Acoustic and Electromagnetic Diffraction Problems

1.3.4Introducing the Notion of “Shadow Radiation”

This notion was introduced for electromagnetic waves by Ufimtsev (1968). It was additionally investigated in Ufimtsev (1990) and discussed in Ufimtsev (1996). A significant part of the results relating to electromagnetic shadow radiation was included in Theory of Edge Diffraction in Electromagnetics (Ufimtsev, 2003). In the present section, the notion of shadow radiation is introduced in conjunction with scalar waves. Consider again the reflection from an infinite perfectly reflecting plane (Fig. 1.6) located in an homogeneous medium. The scattered field in the region z > 0 is determined by the Helmholtz integral expression (Bakker and Copson, 1939)

 

1

S utot

 

ikr

 

utot eikr

ds,

 

usc =

 

 

 

e

 

 

(1.54)

4π

∂n

r

∂n

r

where utot = uinc + usc is the total field, ds = dxdy is a differential area of the infinite plane S (z = 0), and r is the distance between the integration and observation points.

Let the reflecting plane be acoustically soft. Then, on its surface,

ussc = −uinc,

but

 

 

 

∂utot

 

 

∂uinc

 

 

 

∂uinc

 

 

 

∂uinc

 

 

 

 

 

 

 

 

 

s

= 2

 

 

=

 

 

 

 

 

+

 

 

 

 

 

 

.

 

 

(1.55)

 

 

 

 

 

∂n

∂n

 

 

 

∂n

 

∂n

 

 

Therefore, Equation (1.54) can be rewritten as

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where

 

 

 

 

 

ustot,sc = us,1sc

+ us,2sc ,

 

 

 

 

 

 

 

 

 

 

(1.56)

 

 

 

 

 

S uinc

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ds,

 

 

 

us,1sc

=

1

 

eikr

∂uinc eikr

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1.57)

 

4π

 

∂n

 

 

r

 

 

 

∂n

 

 

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 Reflection of waves from an infinite plane S in an homogeneous medium. The source is in the region z > 0. The total field in the shadow region (z < 0) equals zero.

TEAM LinG


1.3 Physical Optics 17

and

us,2sc

=

1

S uinc

 

eikr

∂uinc eikr

ds.

(1.58)

 

 

 

 

 

 

 

4π

∂n

 

r

∂n r

To evaluate the integral in Equation (1.57), we utilize the Helmholtz equivalency theorem (Bakker and Copson, 1939). According to this theorem, the field u created by the acoustic source at the point P in an homogeneous medium (Fig. 1.7) can be represented as the radiation generated by the equivalent sources uinc and ∂uinc/∂N distributed over the closed imaginary surface of the volume V :

 

1

 

 

eikr

 

∂uinc eikr

0,

when P inside V

u(P) =

 

uinc

 

 

 

 

 

 

ds = uinc(P),

 

4π

∂N

 

r

∂N r

when P outside V .

(1.59)

Here it is supposed that the source of the incident wave is located inside the volume V . One should emphasize the following wonderful property of this theorem. The field at the point P inside V or outside V does not depend on the shape of its surface . One

can deform this surface in any way, but the result of the integration in Equation (1.59) will be the same: u(P) = 0 if P V , and u(P) = uinc(P) if P / V .

In order to evaluate integral (1.57), we first apply the equivalency theorem (1.59) to the closed surface = SR + HR (Fig. 1.8). Here SR is a circular plate with a radius R, which is a part of the infinite plane S shown in Figure 1.6, and HR is a hemisphere with the same radius R. It is supposed that the source of the incident wave is inside the volume V .

According to the equivalency theorem (1.59),

 

1

 

 

 

eikr

 

∂uinc eikr

0,

when P inside V

 

SR

 

HR uinc

 

 

 

 

 

 

ds = uinc(P),

when P outside V

4π

+

∂N

 

r

∂N r

 

 

 

 

 

 

 

 

 

 

 

 

(1.60)

Figure 1.7 Illustration of the equivalency principle. is an arbitrary imaginary surface covering

ˆ ˆ

a volume V of a free homogeneous medium, n and N are respectively the inward and outward unit vectors normal to , and a source of the incident wave is inside V .

TEAM LinG


18 Chapter 1 Basic Notions in Acoustic and Electromagnetic Diffraction Problems

Figure 1.8 Surface of integration = SR + HR in Equation (1.60). A source of the incident wave is inside the volume V .

or after replacement of Nˆ

by (

−ˆ

 

 

n),

 

 

1

SR+HR uinc

 

ikr

 

uinc eikr

0,

when P inside V

 

 

 

 

e

 

 

ds = uinc(P),

 

 

4π

∂n

r

∂n

r

when P outside V .

(1.61)

One can show that the field at the observation point P generated by the equivalent sources, distributed over HR, vanishes when the radius R of HR tends to infinity. Note also that with R → ∞, the surface SR is transformed into the infinite plane S. Taking into account these observations, we finally obtain the following values for the function (1.57):

 

0,

in the region z > 0

 

us,1sc

= uinc,

in the region z < 0.

(1.62)

The physical meaning of the field us,1sc is clear. It cancels the incident wave in the region z < 0, creating the complete shadow there. That is why we call this field the shadow radiation and denote it by ush:

ush =

1

S uinc

 

eikr

∂uinc eikr

ds.

(1.63)

 

 

 

 

 

 

 

4π

∂n

 

r

∂n r

With respect to this equation (!), the surface S can be interpreted as perfectly absorbing (i.e., black), as it does not reflect the incident wave (Ufimtsev, 1968, 1990, 1996, 2003).

TEAM LinG