Файл: Doicu A., Wriedt T., Eremin Y.A. Light scattering by systems of particles (OS 124, Springer, 2006.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 859

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

3.3 Homogeneous, Axisymmetric and Nonaxisymmetric Particles

207

 

102

 

 

 

 

 

 

 

101

 

 

 

 

kw = 100

 

 

 

 

 

 

kw = 50

 

 

 

 

 

 

 

 

 

kw = 25

 

-parallel

100

 

 

 

 

 

 

10−1

 

 

 

 

 

 

 

DSCS

10

−2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10−3

 

 

 

 

 

 

 

 

10−4

0

30

60

90

120

150

180

 

 

 

 

 

Scattering Angle (deg)

 

 

Fig. 3.10. Variation of the normalized di erential scattering cross-sections with the beam waist radius

Fig. 3.11. Particles with extreme geometries: prolate spheroid, fibre, oblate cylinder and Cassini particle

astrophysics, atmospheric science and optical particle sizing. For example, light scattering by finite fibres is needed in optical characterization of asbestos or other mineral fibres, while flat particles are encountered as aluminium or mica flakes in coatings.

Figure 3.11 summarizes the particle shapes considered in our exemplary simulation results. The spheroid is a relatively simple shape but convergence problems occur for large size parameters and high aspect ratios. The finite fibre is a more extreme shape because the flank is even and without convexities. This shape is modeled by a rounded prolate cylinder, i.e., by a cylinder with two half-spheres at the ends. In polar coordinates, a rounded prolate cylinder as shown in Fig. 3.12 is described by

 

(a

b) cos θ +

 

2

 

 

2

 

2

 

 

 

 

 

 

 

 

b

 

 

(a

b) sin θ , θ < θ0,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b/ sin θ ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

θ0 ≤ θ ≤ π − θ0,

r (θ) =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

θ0

< θ < π,

 

 

 

 

 

2

 

 

2

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a

b) cos θ +

 

 

b

(a

 

b)

 

sin θ ,

 

 

 

 

 

 

 

 

 

 

 


208 3 Simulation Results

z

2b

z1

z2

x

O

2a

zN

Fig. 3.12. Geometry of a prolate cylinder and the distribution of the discrete sources on the axis of symmetry

where θ0 = arctan[b/(a − b)]. The rounded oblate cylinder is constructed quite similar, i.e., the flank is rounded and top and bottom are flat. An oblate cylinder as shown in Fig. 3.13 is described in polar coordinates by

a/ cos θ ,

 

θ < θ0

 

 

 

 

 

 

 

 

 

 

 

 

r (θ) = (b − a) sin θ +

a2 (b − a)2 cos2 θ , θ0 ≤ θ ≤ π − θ0 ,

 

a/ cos θ ,

 

π

θ0

< θ < π

 

 

 

 

 

 

 

where θ0 = arctan[(b − a)/a]. Cassini particles are a real challenge for light scattering simulations because the generatrix contains concavities on its top and bottom. The Cassini ovals can be described in polar coordinates by the equation

2

2a

2

sin

2

θ +

 

b

4

4

sin

2

θ + 4a

4

sin

4

θ

r (θ) = a

 

 

 

 

4a

 

 

 

and the shape depends on the ratio b/a. If a < b the curve is an oval loop, for a = b the result is a lemniscate, and for a > b the curve consists of two separate loops. If a is chosen slightly smaller than b we obtain a concave, bone-like shape, and this concavity becomes deeper as a approaches to b.

For the prolate particles considered in our simulations, the sources are distributed on the axis of symmetry as in Fig. 3.12, while for the oblate particles, the sources are distributed in the complex plane as in Fig. 3.13. The wavelength of the incident radiation is λ = 0.6328 µm, the relative refractive index



3.3 Homogeneous, Axisymmetric and Nonaxisymmetric Particles

209

z

O

x

2a

 

 

2b

 

 

ReZ

 

 

O

ImZ

 

 

zN

 

z2 z1

Fig. 3.13. Geometry of an oblate cylinder and the distribution of the discrete sources in the complex plane

Table 3.3. Surface parameters of particles with extreme geometries

Particle type

a (µm) b (µm) αp ()

βp ()

Prolate spheroid

8.5

0.85

0

0

Fibre

3

0.06

0

0

Oblate cylinder

0.03

3

0

0

Cassini particle

1.1

1.125

0

45

 

 

 

 

 

Table 3.4. Maximum expansion and azimuthal orders for particles with extreme geometries

Particle type

Nrank

Nint

Prolate spheroid

100

1000

Fibre

50

3000

Oblate cylinder

36

5000

Cassini particle

28

1000

 

 

 

is mr = 1.5 and the scattering characteristics are computed in the azimuthal plane ϕ = 0. The parameters describing the geometry and orientation of the particles are given in Table 3.3, while the parameters controlling the convergence process are listed in Table 3.4. Note that the Cassini particle has a diameter of about 3.15 µm and an aspect ratio of about 1/4.


210 3 Simulation Results

In Figs. 3.14–3.17 we plot the normalized di erential scattering crosssections together with the results computed with the discrete sources method for parallel and perpendicular polarizations, and for the case of normal incidence. It is apparent that the agreement between the curves is acceptable.

We conclude this section with an extensive validation test for an oblate cylinder of radius ksb = 15, length 2ksa = 7.5 and relative refractive index

102

 

 

 

 

 

 

101

 

 

TAXSYM - parallel

 

 

 

 

TAXSYM - perpendicular

 

100

 

 

DSM - parallel

 

 

 

 

 

DSM - perpendicular

 

 

10 1

 

 

 

 

 

 

DSCS

 

 

 

 

 

 

10 2

 

 

 

 

 

 

10 3

 

 

 

 

 

 

10 4

 

 

 

 

 

 

10 5

 

 

 

 

 

 

6

 

 

 

 

 

 

10 180

120

60

0

60

120

180

Scattering Angle (deg)

Fig. 3.14. Normalized di erential scattering cross-sections of a prolate spheroid with a = 8.5 µm and b = 0.85 µm. The curves are computed with the TAXSYM routine and the discrete sources method (DSM)

DSCS

10 1

 

 

 

 

 

10 2

 

TAXSYM - parallel

 

 

 

TAXSYM - perpendicular

 

10 3

 

DSM - parallel

 

 

 

DSM - perpendicular

 

 

10 4

 

 

 

 

 

10 5

 

 

 

 

 

10 6

 

 

 

 

 

10 7

 

 

 

 

 

10 8

 

 

 

 

 

9

60

0

60

120

180

10 180 120

Scattering Angle (deg)

Fig. 3.15. Normalized di erential scattering cross-sections of a fibre particle with a = 3.0 µm and b = 0.06 µm. The curves are computed with the TAXSYM routine and the discrete sources method (DSM)