Файл: Doicu A., Wriedt T., Eremin Y.A. Light scattering by systems of particles (OS 124, Springer, 2006.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 844

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

240 3 Simulation Results

DSCS

101

 

 

TCOMP - localized sources - parallel

100

TCOMP - localized sources - perpendicular

 

TCOMP - distributed sources - parallel

10−1

TCOMP - distributed sources - perpendicular

TMULT - parallel

10−2

TMULT - perpendicular

TLAY - parallel

 

TLAY - perpendicular

10−3

10−4

10−5

10−6

60

120

180

240

300

360

0

Scattering Angle (deg)

Fig. 3.63. Normalized di erential scattering cross-sections of a composite particle consisting of three identical cylinders

<DSCS>

101

TCOMP - localized sources - parallel

 

 

TCOMP - localized sources - perpendicular

100

TCOMP - distributed sources - parallel

 

TCOMP - distributed sources - perpendicular

 

TMULT - parallel

10−1

TMULT - perpendicular

TLAY - parallel

 

TLAY - perpendicular

10−2

10−3

10−4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

30

60

90

120

150

180

Scattering Angle (deg)

Fig. 3.64. Averaged di erential scattering cross-sections of a composite particle consisting of three identical cylinders

on the imaginary axis. The global number of integration points is Nint = 100. The di erential scattering cross-sections are plotted in Fig. 3.66 for the case of normal incidence.

Scattering by composite spheroids as shown in Fig. 3.67 can be computed with localized and distributed sources. The results plotted in Fig. 3.68 correspond to a composite spheroid with ksa = 20, ksb = 5, ksz1 = ksz2 = 10 and


3.7 Composite Particles

241

z r

l

L

z1

x

 

z3

 

R

Fig. 3.65. Geometry of a composite particle consisting of three cylinders

 

10−1

 

 

 

 

 

 

 

 

 

 

 

 

 

TCOMP - parallel

 

 

 

 

 

 

 

TCOMP - perpendicular

 

 

10−2

 

 

 

 

 

 

 

DSCS

10−3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10−4

 

 

 

 

 

 

 

 

10−5

0

30

60

90

120

150

180

Scattering Angle (deg)

Fig. 3.66. Normalized di erential scattering cross-sections of a composite particle consisting of three cylinders


242 3 Simulation Results

z

 

a

z1

x

 

z2

b

Fig. 3.67. Geometry of a composite spheroid

 

101

 

 

 

 

 

 

 

 

 

parallel - distributed sources

 

 

 

100

 

parallel - localized sources

 

 

 

 

perpendicular - distributed sources

 

 

 

 

 

 

10−1

 

perpendicular - localized sources

 

DSCS

 

 

 

 

 

 

10−2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10−3

 

 

 

 

 

 

 

10−4

 

 

 

 

 

 

 

10−5

60

120

180

240

300

360

 

0

Scattering Angle (deg)

Fig. 3.68. Normalized di erential scattering cross-sections of a composite spheroid

mr1 = mr2 = 1.2, while the parameters controlling the T -matrix calculation are given in Table 3.7.

3.8 Complex Particles

In the following analysis we consider the inhomogeneous particle depicted in Fig. 3.69. The host particle is a sphere with radius R = 1.0 µm and relative


 

 

3.8 Complex Particles

243

Table 3.7. Parameters of calculation for a composite spheroid

 

 

 

 

 

 

Type of sources

Nrank-half-spheroid

Nrank-composite particle

Nint

 

 

 

 

 

 

Localized

22

34

1000

 

Distributed

18

32

1000

 

 

 

 

 

 

Z

mr1,1

O1

z1

mr1,2

x2 O

X

mr2,1

x1

mr2,2

mr

z2

O2

 

Fig. 3.69. Geometry of an inhomogeneous sphere containing a composite and a layered spheroid as separate inclusions

refractive index mr = 1.2, while the wavelength of the incident radiation is λ = 0.628 µm. The inhomogeneities are a composite and a layered prolate spheroid. The composite particle consists of two identical half-spheroids with semi-axes a1 = 0.3 µm and b1 = 0.2 µm, and relative refractive indices (with respect to the ambient medium) mr1,1 = 1.5 and mr1,2 = 1.33. The layered particle consists of two concentric prolate spheroids with semi-axes a2,1 = 0.3 µm, b2,1 = 0.2 µm, and a2,2 = 0.15 µm, b2,2 = 0.1 µm, and relative refractive indices mr2,1 = 1.5 and mr2,2 = 1.8. The position of the composite particle with respect to the global coordinate system of the host particle is specified by the Cartesian coordinates x1 = y1 = z1 = 0.3 µm, while the Euler orientation

angles are αp1 = βp1 = 45. For the layered particle, we choose x2 = y2 = z2 = 0.3 µm and αp2 = βp2 = 0.

The results plotted in Fig. 3.70 are computed with the TMULT routine and show the di erential scattering cross-sections for the two-spheroid system. The particles are placed in a medium with a refractive index of 1.2, and the


244 3 Simulation Results

 

−1.00

 

 

 

 

 

 

 

 

10

 

 

 

TMULT - parallel

 

 

 

 

 

 

 

 

 

 

−2.00

 

 

 

TMULT - perpendicular

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

−3.00

 

 

 

 

 

 

 

DSCS

10

 

 

 

 

 

 

 

−4.00

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

−5.00

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

−6.00

 

 

 

 

 

 

 

 

10

0

60

120

180

240

300

360

 

 

Scattering Angle (deg)

Fig. 3.70. Normalized di erential scattering cross-sections of a composite and a layered particle

 

102

 

 

 

 

 

 

 

101

 

 

TINHOM - parallel

 

 

 

 

 

TINHOM - perpendicular

 

 

100

 

 

 

 

 

 

DSCS

10−1

 

 

 

 

 

 

10−2

 

 

 

 

 

 

10−3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10−4

 

 

 

 

 

 

 

10−5

 

 

 

 

 

 

 

10−6

60

120

180

240

300

360

 

0

Scattering Angle (deg)

Fig. 3.71. Normalized di erential scattering cross-sections of an inhomogeneous sphere. The inclusion consists of a composite and a layered particle

dimension of the system T -matrix is given by Nrank = 14 and Mrank = 12. The incident wave travel along the Z-axis of the global coordinate system and the angular scattering is computed in the azimuthal plane ϕ = 0. The system T -matrix serves as input parameter for the TINHOM routine. The resulting T -matrix is characterized by Nrank = 16 and Mrank = 14, and corresponds to a sphere containing a composite and a layered spheroid as separate inclusions. Figure 3.71 illustrates the di erential scattering crosssections for the inhomogeneous sphere in the case of normal incidence.