Файл: Doicu A., Wriedt T., Eremin Y.A. Light scattering by systems of particles (OS 124, Springer, 2006.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 841

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

3.10 E ective Medium Model

249

 

0.4

 

 

 

 

 

 

 

EFMED

 

 

 

 

 

 

QCAMIE

 

 

 

 

Tangent

0.3

 

 

 

 

 

 

 

 

 

 

 

EffectiveLoss

0.2

 

 

 

 

 

0.1

 

 

 

 

 

 

0.0

0.5

1.0

1.5

2.0

2.5

 

0.0

Size Parameter

Fig. 3.79. E ective loss tangent versus size parameter computed with the EFMED routine and the Matlab program QCAMIE

and the quasi-crystalline approximation with coherent potential [118],

 

 

 

 

 

c (εr 1)

 

 

 

 

 

 

 

 

K2

= k2 1 +

 

 

 

 

 

 

 

 

 

 

s

s

 

1 +

 

ks2

(εr1)

(1

− c)

 

 

 

 

 

 

 

 

 

 

3Ks2

 

 

 

 

 

 

 

 

 

 

 

2

R

3

 

 

 

 

 

εr 1

 

 

(1 − c)

4

 

 

×

1 + j

2Ksks

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

9

 

 

 

1 +

ks

(εr1)

(1

− c)

 

(1 + 2c)2

 

 

 

 

 

 

 

 

 

 

 

3Ks2

 

 

 

 

Figure 3.80 shows plots of Im{Ks/k0} versus concentration for spherical particles of radius a = 3.977 ·103 µm and relative refractive index (with respect to the ambient medium) mr = 1.194. The wave number in free space is k0 = 10, while the refractive index of the ambient medium is m = 1.33.

In Fig. 3.81 we plot Im{Ks/k0} versus concentration for a = 1.047 · 102 µm, mr = 1.789 and m = 1.0. Computed results using the T -matrix method agree with the quasi-crystalline approximation. It should be observed that both the quasi-crystalline approximation and the quasi-crystalline approximation with coherent potential do predict maximum wave attenuation at a certain concentration.

In Figs. 3.82 and 3.83, we show calculations of Re{Ks} and Im{Ks} as functions of the size parameter x = ks max{a, b} for oblate and prolate spheroids. The spheroids are assumed to be oriented with their axis of symmetry along the Z-axis or to be randomly oriented. Since the incident wave is also assumed to propagate along the Z-axis, the medium is not anisotropic and is characterized by a single wave number Ks. The axial ratios are a/b = 0.66 for oblate spheroids and a/b = 1.5 for prolate spheroids. As before, the fractional


250 3 Simulation Results

Im(K/k)

−3.0

10

EFMED (T-Matrix Multiple Scattering Theory)

QCA QCA - CP

−4.0

10

−5.0

 

 

 

 

 

 

10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 

Concentration

Fig. 3.80. Im{Ks/k0} for a = 3.977 · 103 µm, mr = 1.194 and m = 1.33. The results are computed with the T -matrix method, quasicrystalline approximation (QCA) and quasicrystalline approximation with coherent potential (QCA-CP)

Im(K/k)

−4.0

10

EFMED (T-Matrix Multiple Scattering Theory)

QCA QCA - CP

−5.0

10

−6.0

 

 

 

 

 

 

10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Concentration

Fig. 3.81. Im{Ks/k0} for a = 1.047 · 102 µm, mr = 1.789 and m = 1.0. The results are computed with the T -matrix method, quasicrystalline approximation (QCA) and quasicrystalline approximation with coherent potential (QCA-CP)

concentration is c = 0.2 and the relative refractive index of the particles is mr = 1.789. The significant feature in Fig. 3.82 is the occurrence of a maximum in Re{Ks} at x = 1.6 for spherical particles. In the low-frequency regime up to x = 0.5, the Im{Ks} curves increase rapidly with x and then show a smooth


3.10 E ective Medium Model

251

12.4

12.0

11.6 Re(K)

11.2

10.8

10.4

0.0

sphere

oblate - fixed orientation oblate - random orientation prolate - fixed orientation prolate - random orientation

0.4

0.8

1.2

1.6

2.0

Size Parameter

Fig. 3.82. Re{Ks} versus the size parameter x = ks max{a, b} for oblate and prolate spheroids with a/b = 0.66 and a/b = 1.5, respectively. The calculations are performed for c = 0.2, mr = 1.789 and m = 1.0

Im(K)

0.0

10

−1.0

10

−2.0

10

−3.0

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

sphere

 

 

−4.0

 

 

oblate - fixed orientation

 

10

 

 

 

oblate - random orientation

 

 

 

 

 

prolate - fixed orientation

 

−5.0

 

 

prolate - random orientation

 

 

 

 

 

 

10

0.0

0.4

0.8

1.2

1.6

2.0

Size Parameter

Fig. 3.83. Im{Ks} versus the size parameter x = ks max{a, b} for oblate and prolate spheroids. The parameters of calculation are as in Fig. 3.82

increase with x. Note that for a given size parameter x, the radius of a spherical particle is larger than the equal-volume-sphere radii of an oblate and a prolate spheroid, and this feature is reflected in the variations of Re{Ks} and Im{Ks}.


A

Spherical Functions

In this appendix we recall the basic properties of the solutions to the Bessel and Legendre di erential equations and discuss some computational aspects. Properties of spherical Bessel and Hankel functions and (associated) Legendre functions can be found in [1, 40, 215, 238].

In a source-free isotropic medium the electric and magnetic fields satisfy the equations

× × X − k2X = 0,

· X = 0,

where X stands for E or H. Since

× × X = X + ( · X) ,

we see that X satisfies the vector wave equation

X + k2X = 0

and we deduce that each component of X satisfies the scalar wave equation or the Helmholtz equation

 

 

 

 

 

 

 

 

 

 

 

u + k2u = 0.

 

 

 

The Helmholtz equation written in spherical coordinates as

 

 

 

 

1

 

2 ∂u

 

1

∂u

 

1 2u

+ k

2

u = 0

 

 

 

 

r

 

 

 

+

 

 

 

 

sin θ

 

 

+

 

 

 

 

r2 ∂r

 

∂r

r2 sin θ

∂θ

∂θ

r2 sin2 θ

∂ϕ2

 

is separable, so that upon replacing

u(r) = f1(r)Y (θ, ϕ) ,


254 A Spherical Functions

where (r, θ, ϕ) are the spherical coordinates of the position vector r, we obtain

1

r2f1 + 2rf1 +

k2r2 − n(n + 1) f1 = 0,

(A.1)

sin θ

∂Y

 

+

1

 

 

2Y

+ n(n + 1)Y = 0.

(A.2)

 

 

 

 

 

 

 

 

 

sin θ ∂θ

∂θ

sin2 θ ∂ϕ2

 

 

 

 

The above equations are known as the Bessel di erential equation and the di erential equation for the spherical harmonics. Further, setting

 

 

 

 

 

Y (θ, ϕ) = f2(θ)f3 (ϕ) ,

 

 

 

we find that

 

 

 

 

 

 

 

 

 

 

1 d

 

df2

 

 

m2

 

= 0,

(A.3)

 

 

 

 

 

sin θ

 

+

n(n + 1)

 

 

f2

sin θ

dθ

dθ

sin2 θ

 

 

 

 

 

 

 

 

f3 + m2f3

= 0.

(A.4)

The di erential equation (A.3) is known as the associated Legendre equation, while the solution to the di erential equation (A.4) is f3(ϕ) = exp(j ).

A.1 Spherical Bessel Functions

With the substitution x = kr, the spherical Bessel di erential equation can be written in the standard form

x2f (x) + 2xf (x) + x2 − n(n + 1) f (x) = 0 .

For n = 0, 1, . . . , the functions

 

 

 

 

 

 

p

n+2p

 

 

 

 

 

( 1) x

 

 

 

 

 

 

 

jn(x) =

 

 

 

 

 

 

 

 

2pp!(2n + 2p + 1)!!

 

 

 

 

 

p=0

 

 

 

 

 

 

 

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

(2n)!

( 1)px2p−n−1

y

(x) =

 

 

 

 

 

 

 

, (A.5)

 

 

 

 

 

 

 

n

 

2nn! p=0 2pp! (2n + 1) (2n + 3) · · · (2n + 2p − 1)

where 1 · 3 · · · (2n + 2p + 1) = (2n + 2p + 1)!!, are solutions to the spherical Bessel di erential equation (the first coe cient in the series (A.5) has to be set equal to one). The functions jn and yn are called the spherical Bessel and Neumann functions of order n, respectively, and the linear combinations

h(1n ,2) = jn ± jyn

are known as the spherical Hankel functions of the first and second kind. From the series representations we see that