Файл: Doicu A., Wriedt T., Eremin Y.A. Light scattering by systems of particles (OS 124, Springer, 2006.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 825

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

282 B Wave Functions

Inserting the spherical wave expansion of the plane wave exp(jk ·r0) and integrating over α, we derive the following series representation for the translation coe cients:

Amn,m1

n (kr0) =

 

2jn −n

jn

 

 

nn (n + 1) (n + 1)

 

 

 

 

n

×a1 (m, m | n , n, n ) u1m−m n (kr0) ,

Bmn,m1

n (kr0) =

 

2jn −n

jn

 

 

nn (n + 1) (n + 1)

 

 

 

 

n

×b1 (m, m | n , n, n ) u1m−m n (kr0) ,

where

a1

(m, m

|

n , n, n ) = π mm π|m|(β)π|m |

(β) + τ |m|(β)τ

|m |

(β)

 

 

0

 

 

n

 

n

n

 

n

 

 

 

 

 

×Pn|m−m | (cos β) sin β dβ,

 

 

 

 

 

(B.68)

b1

(m, m

 

π

m

| (β) τ

|

m

|(β) + m τ |

m

|(β)π|

m

|

 

|

n , n, n ) =

 

|

 

 

 

 

(β)

 

 

0

n

 

n

 

n

 

n

 

 

 

 

 

×

P

|m−m | (cos β) sin β dβ.

 

 

 

 

 

(B.69)

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

We note that the coe cients a1(·) and b1(·) can be expressed in terms of the coe cients a(·) by making use of the recurrence relations for the associated Legendre functions. As in the scalar case, the integration with respect to the azimuthal angle α gives

 

 

 

 

 

 

 

jn +m −n−m

 

 

 

A1

(kr

) =

 

 

 

 

 

 

 

e−j(m −m)ϕ0

 

 

 

 

 

 

 

 

 

 

 

mn,m n

0

 

nn (n + 1) (n + 1)

 

 

 

 

 

 

×

π J

m −m

(sin β)

mm π|m|(β)π|m |

(β)

 

 

 

0

 

0

 

n

n

 

+ τn|m|(β)τn|m |(β) ejkz0 cos β sin β dβ


B.4 Translations

283

and

B1

(kr

) =

 

 

 

 

jn +m −n−m

 

e−j(m −m)ϕ0

 

 

 

 

 

 

 

 

 

 

 

 

mn,m n

0

 

 

nn (n + 1) (n + 1)

 

 

 

 

 

 

×

π J

m −m

(sin β)

|m|(β)τ

|m |

(β)

 

 

 

0

 

0

 

 

n

n

 

 

 

 

+ m τ |m|(β)π|m |

(β) ejkz0 cos β sin βdβ.

 

 

 

 

 

 

 

n

 

n

 

 

 

 

 

If the translation is along the z-axis the double summation in (B.66) and (B.67) reduces to a single summation over the index n , and we have

A1

(kz

) =

 

 

 

 

 

 

jn −n

π m2π|m|(β)π|m|

(β)

 

 

 

 

 

 

 

mn,mn

 

0

 

 

nn (n + 1) (n + 1)

0

n

n

 

 

 

 

 

 

+ τ |m|(β)τ |m|(β) ejkz0 cos β sin β dβ

 

 

 

 

 

 

 

 

 

 

 

n

n

 

 

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1

 

(kz

) =

 

 

 

 

mjn −n

 

π π|m|(β)τ

|m|(β)

 

 

 

 

 

 

 

mn,mn

 

0

 

 

 

nn (n + 1) (n + 1) 0

n

n

 

 

 

 

 

 

 

 

+ τ |m|(β)π|m|(β) ejkz0 cos β sin β dβ.

 

 

 

 

 

 

 

 

 

 

 

n

n

 

 

 

 

 

Passing to the radiating vector spherical wave functions we consider the integral representation (B.28) and the relation r = r0 + r1. For r1 > r0, this representation can written as

M 3

(kr) =

 

1

 

 

2π π (

j) m

 

(β, α) Q(k, β, α, r

 

)ejk(β,α)·r0

2πjn+1

mn

1

mn

 

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

× sin β dβ dα,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

whence, using the vector spherical wave expansion

 

 

 

 

 

 

 

 

 

(j) mmn (β, α) Q(k, β, α, r1) =

 

n

 

 

 

 

 

 

 

 

 

 

amn,m3 n M m3 n (kr1)

 

 

 

 

 

 

 

 

 

 

n =1 m =−n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+b3

 

N

1

 

(kr

1

) ,

 

 

 

 

 

 

 

 

 

 

 

 

mn,m n

 

m n

 

 

 

 

 

with

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a3

 

 

=

 

1

a1

, b3

 

 

=

 

1

b1

 

 

 

,

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

mn,m n

 

 

mn,m n

 

mn,m n

 

 

2 mn,m n

 

 

 


284 B Wave Functions

yields

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(kr

)M

 

(kr

)

M 3

(kr) =

 

A1

 

 

3

mn

 

 

mn,m n

 

0

 

 

m n

1

 

 

n =1 m =−n

 

 

 

 

 

 

 

 

 

 

+B1

 

(kr

0

)N 3

 

(kr

),

 

 

 

 

mn,m n

 

m n

 

1

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(kr

)M

 

(kr

)

N 3

(kr) =

 

B1

 

3

mn

 

 

mn,m n

 

0

 

 

m n

1

 

 

n =1 m =−n

 

 

 

 

 

 

 

 

 

 

+A1

 

(kr

0

)N 3

 

(kr

).

 

 

 

 

mn,m n

 

m n

 

1

 

 

 

 

For r1 < r0, we represent the radiating vector spherical wave functions as

M 3

(kr) =

 

1

2π π

(

j) m

 

(β, α) Q(k, β, α, r

)ejk(β,α)·r1

2πjn+1

 

mn

 

0 0

 

 

mn

0

 

 

 

× sin β dβ dα,

 

 

 

 

 

 

proceed as in the case of regular vector spherical wave functions, and obtain

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

M mn3

(kr) =

Amn,m3

n (kr0)M m3 n (kr1)

 

 

 

n =1 m =−n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+B3

 

(kr

0

)N 3

 

(kr

 

),

 

 

 

 

 

 

mn,m n

 

 

m n

 

1

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

N

3

(kr) =

 

B3

 

 

 

 

(kr

)M

3

(kr

)

 

mn

 

 

 

mn,m n

 

0

 

 

 

m n

1

 

 

 

 

n =1 m =−n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+A3

 

(kr

 

)N

3

 

(kr

),

 

 

 

 

 

 

mn,m n

0

 

 

m n

 

1

 

 

 

 

 

where

A3mn,m n (kr0) =

Bmn,m3 n (kr0) =

 

 

jn −n

 

 

 

2π π

 

m

|(β)π|

m

|(β)(B.70)

 

 

 

 

 

 

 

 

 

 

 

mm π|

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π nn (n + 1) (n + 1)

 

0

0

 

 

n

 

 

 

n

 

 

 

 

m

|(β)

 

j m

m

α

Q(k, β, α, r0) sin βdβdα,

+ τn|m|(β)τn|

 

e (

 

 

)

 

 

 

jn −n

 

 

 

2π π

|

m

|(β)τ

|

m

|(β) (B.71)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π nn (n + 1) (n + 1)

 

0

 

 

0

n

 

 

n

 

 

 

+ m τn|m|(β)πn|m |(β) ej(m−m )αQ(k, β, α, r0) sin β dβ dα .

Making use of the spherical wave expansion of the quasi-plane wave Q(k, β, α, r0), we derive the series representations


B.4 Translations

285

Amn,m3 n (kr0) =

 

 

 

 

2jn −n

jn

 

 

 

 

 

 

 

 

 

nn (n + 1) (n + 1)

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

a

(m, m

|

n , n, n ) u3

(kr

) ,

(B.72)

× 1

 

 

m−m n

0

 

 

Bmn,m3 n (kr0) =

 

 

 

2jn −n

jn

 

 

 

 

 

 

 

 

nn (n + 1) (n + 1)

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

b

(m, m

|

n , n, n ) u3

(kr

) .

(B.73)

× 1

 

 

m−m n

0

 

 

In (B.70) and (B.71) the integration with respect to the azimuthal angle α can be analytically performed and in the case of axial translation, the integral representations for the translation coe cients A3mn,m n and Bmn,m3 n read as

A3

(kz ) =

 

 

 

 

 

 

 

2jn −n

 

 

 

 

 

π2 jm2π|m|(β)π|m|

(β)

 

 

 

 

 

 

 

 

 

 

 

 

 

mn,mn

 

0

 

nn (n + 1) (n

+ 1)

0

 

n

n

 

 

 

 

 

 

 

 

 

m

 

|m|

 

 

 

e

jkz0 cos β

sin β dβ,

 

 

 

 

 

+ τn|

|(β)τn

(β)

 

 

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B3

 

(kz ) =

 

 

 

 

 

2mjn −n

 

 

 

 

π2 jπ|m|(β)τ

|m|(β)

 

 

 

 

 

 

 

 

 

 

 

 

 

mn,mn

0

 

 

 

nn (n + 1) (n

+ 1) 0

 

n

n

 

 

 

 

 

 

 

 

 

m

|m|

 

 

 

jkz0 cos β

sin β dβ.

 

 

 

 

 

 

 

+ τn|

|(β)πn

(β) e

 

 

 

 

 

The vector addition coe cients Amn,m n and Bmn,m n can be related to the scalar addition coe cients Cmn,m n . For axial translations and positive values of m, these relations can be obtained by partial integration and by using the integral representations for the addition coe cients, the associated Legendre equation (A.13) and the recurrence relation (A.17). We obtain [150]

 

 

n (n + 1)

 

 

 

 

 

 

 

 

 

 

Amn,mn (kz0) =

 

 

 

 

 

 

 

 

 

[Cmn,mn (kz0)

 

 

 

 

 

 

 

 

 

 

n(n + 1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

kz0

 

 

(n − m + 1)(n + m + 1)

 

C

mn,mn +1

(kz

)

 

 

 

 

 

 

 

 

 

n + 1

 

 

 

 

 

 

(2n + 1)(2n + 3)

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(n − m)(n + m)

 

 

 

 

 

 

 

 

 

+

kz0

 

 

 

C

mn,mn −1

(kz

)

 

 

 

 

 

 

 

 

 

 

n

 

(2n + 1)(2n − 1)

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and

m

Bmn,mn (kz0) = jkz0 Cmn,mn (kz0) .

nn (n + 1) (n + 1)


286 B Wave Functions

For negative values of the index m, the following symmetry relations can be used for practical calculations

A−mn,−mn (kz0) = Amn,mn (kz0),

B−mn,−mn (kz0) = −Bmn,mn (kz0).

The translation coe cients for axial translation can be obtained from the above recurrence relations. In general, through rotation of coordinates, the numerical advantages to a common axis can be exploited and a transformation from Oxyz to Ox1y1z1 can be accomplished through three steps [150]:

1.The coordinate system Oxyz is rotated with the Euler angles α = ϕ0, β = θ0 and γ = 0, where (r0, θ0, ϕ0) are the spherical coordinates of the position vector r0.

2.The rotated coordinate system is axially translated with r0.

3.The translated coordinate system is rotated back to the original orientation with the Euler angles α = 0, β = −θ0 and γ = −ϕ0.

The rotation-axial translation-rotation scheme gives

n

Xmn,m n (kr0) = Dmmn (ϕ0, θ0, 0)Xm n,m n (kr0) m =−n

×Dmn m (0, −θ0, −ϕ0),

where X stands for A or B. The translation addition theorem can be written in matrix form as

M p

(kr)

 

pq

 

M q

(kr

)

 

mn

 

= T

(kr0)

m n

1

 

,

N mnp

(kr)

 

N mq n (kr1)

where the pair (p, q) takes the values (1, 1), (3, 3), and (3, 1), and

 

11

 

 

 

33

 

A1

 

 

 

(kr

0

) B1

 

 

 

 

(kr

0

)

T

(kr0) = T

(kr0) =

mn,m n

 

 

mn,m n

 

 

 

 

Bmn,m1 n (kr0) Amn,m1

n (kr0)

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31

 

 

 

A3

 

(kr

0

) B3

 

 

 

(kr

0

)

 

 

 

 

T

(kr0) =

mn,m n

 

 

mn,m n

 

 

 

 

 

 

 

 

Bmn,m3

n

(kr0) Amn,m3

n (kr0) .

 

 

We conclude this section by noticing some symmetry properties of the translation coe cients for the inverse transformation:

M p

(kr

)

 

pq

 

M q

(kr)

mn

1

 

= T

(−kr0)

m n

 

N mnp

(kr1)

 

N mq n (kr) .