Файл: Doicu A., Wriedt T., Eremin Y.A. Light scattering by systems of particles (OS 124, Springer, 2006.pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 28.06.2024
Просмотров: 829
Скачиваний: 0
B.3 Rotations |
275 |
The S-coe cients obey the three-term downward recurrence relation |
|
|||||||
|
|
|
|
Su−1 |
= puSu |
+ quSu+1 |
|
|
|
|
|
|
mn,m1n1 |
mn,m1n1 |
mn,m1n1 |
|
|
for u = n + n1, n + n1 − 1, . . . , max(|m + m1|, |n − n1|) with |
|
|||||||
pu = |
(2u + 1) {(m − m1)u(u + 1) − (m + m1) [n (n + 1) − n1 (n1 + 1)]} |
, |
||||||
|
|
|
|
(u + 1) (n + n1 − u + 1) (n + n1 + u + 1) |
|
|||
q |
u |
= |
− |
u(u + n − n1 + 1) (u − n + n1 + 1) |
|
|
||
|
|
(u + 1) (n + n1 − u + 1) |
|
|
|
|||
|
|
|
× |
(u + m + m1 + 1) (u − m − m1 + 1) |
|
|
||
|
|
|
n + n1 + u + 1 |
|
|
|
||
and the starting values |
|
|
|
|
||||
|
|
|
|
|
Sn+n1+1 |
= 0, |
|
|
|
|
|
|
|
mn,m1n1 |
|
|
|
|
|
|
|
|
Sn+n1 |
= 1. |
|
|
|
|
|
|
|
mn,m1n1 |
|
|
|
The rotation addition theorem for vector spherical wave functions is [213]
|
n |
|
|
|
|
|
|
|
M mn1,3 (kr, θ, ϕ) = |
Dmmn |
(α, β, γ)M m1,3n(kr, θ1, ϕ1), |
(B.52) |
|||||
m =−n |
|
|
|
|
|
|
|
|
|
n |
|
|
|
|
|
|
|
N mn1,3 (kr, θ, ϕ) = |
Dmmn |
(α, β, γ)N m1,3n(kr, θ1, ϕ1) , |
(B.53) |
|||||
m =−n |
|
|
|
|
|
|
|
|
and in matrix form we have |
|
|
|
|
|
|
|
|
M mn1,3 (kr, θ, ϕ) |
= R (α, β, γ) |
M m1,3n (kr, θ1, ϕ1) |
, |
|
||||
N 1,3 (kr, θ, ϕ) |
N 1,3 |
(kr, θ |
, ϕ |
) |
|
|||
mn |
|
|
m n |
1 |
1 |
|
|
|
where R is the rotation matrix. The rotation matrix has a block-diagonal structure and is given by
R (α, β, γ) = |
Rmn,m n (α, β, γ) |
0 |
|
0 |
Rmn,m n (α, β, γ) |
, |
|
where |
|
|
|
Rmn,m n (α, β, γ) = Dmmn |
(α, β, γ)δnn . |
|
|
The unitarity condition for the D-functions yields |
|
||
R (−γ, −β, −α) = R−1 (α, β, γ) |
(B.54) |
B.4 Translations |
277 |
functions. For regular spherical wave functions, we use the integral representation (B.1), the relation r = r0 + r1, and the spherical wave expansion of the plane wave exp(jk · r1) to obtain
|
|
|
∞ |
|
n |
|
|
|
|
|
|
|
|
|
|
|
(kr |
|
) u1 |
|
(kr |
|
) |
|
(B.56) |
||||
u1 |
(kr) = |
|
C1 |
0 |
|
1 |
|
|||||||
mn |
|
|
|
|
mn,m n |
|
m n |
|
|
|
|
|||
|
|
|
n =0 m =−n |
|
|
|
|
|
|
|
|
|
||
with |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
jn −n 2π π |
|
|
|
jk(β,α) r |
|
|
|||||||
Cmn,m n (kr0) = |
|
|
0 |
|
Ymn (β, α) Y−m n (β, α) e |
|
|
· |
|
0 |
sin β dβ dα . |
|||
|
2π |
0 |
|
|
|
(B.57) Taking into account the spherical wave expansion of the plane wave exp(jk·r0) and integrating over α, we find the series representation
Cmn,m1 n (kr0) = 2jn −n jn a (m, m | n , n, n ) u1m−m n (kr0) (B.58)
n
with the expansion coe cients
a (m, m | n , n, n ) = π Pn|m| (cos β) Pn|m | (cos β) Pn|m−m | (cos β) sin βdβ.
0
We note that the expansion coe cients a(·) are defined by the spherical harmonic expansion theorem [70]
Pn|m| (cos β) Pn|m | (cos β) = a (m, −m | n , n, n ) Pn|m+m | (cos β) ,
n
where the summation over n is finite covering the range |n − n |, |n − n | + 2, ..., n + n . These coe cients can be identified with a product of two Wigner 3j symbols, which are associated with the coupling of two angular momentum eigenvectors. The azimuthal integration in (B.57) can be analytically performed by using the identity
k · r0 = kρ0 sin β cos (α − ϕ0) + kz0 cos β
and the standard integral
2π
ejx cos(α−ϕ0)ej(m−m )α dα = 2πjm −mJm −m(x)e−j(m −m)ϕ0 ,
0
where (ρ0, ϕ0, z0) are the cylindrical coordinates of r0, and the result is
C1 |
(kr |
) = jn +m −n−me−j(m −m)ϕ0 |
π J |
m −m |
(kρ sin β) |
|||
mn,m n |
0 |
|
|
|
|
0 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
× |
P |m| (cos β) P |
|m | |
(cos β) ejkz0 cos β sin β dβ . (B.59) |
|||
|
|
n |
n |
|
|
|
|