Файл: Doicu A., Wriedt T., Eremin Y.A. Light scattering by systems of particles (OS 124, Springer, 2006.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 819

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

26 1 Basic Theory of Electromagnetic Scattering

where λ = 1and λz = 1z . Equation (1.35) is the dispersion relation for ordinary waves, while (1.36) is the dispersion relation for extraordinary waves. For f = 0 it follows that Dβ(1) = 0 and Dα(2) = 0, and further that Dα(1) = Dα

and Dβ(2) = −Dβ . The electric displacement is then given by

2π π

Dα(β, α)eαe

jk1

(β,α)

r

− Dβ (β, α)eβ e

jk2

(β,α)

r

 

D(r) =

 

·

 

 

·

 

sinβ dβ dα ,

00

(1.37) where k1(β, α) = k1ek (β, α), k2(β, α) = k2(β)ek (β, α), and for notation simplification, the dependence of the spherical unit vectors eα and eβ on the spherical angles β and α is omitted. For εxy = ε, the integral representations for the electric and magnetic fields become

E(r) =

1

2π π

Dα(β, α)eαe

jk1

(β,α)

r

 

 

 

 

(1.38)

 

 

 

 

 

 

 

·

 

 

 

 

 

 

ε

0

0

 

 

 

 

 

 

 

 

 

− ε [λ(β)ek + λββ (β)eβ ] Dβ (β, α)ejk2(β,α)·r sinβ dβ dα ,

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H(r) =

1

 

2π π

Dα(β, α)eβ e

jk

(β,α)

r

 

 

 

0 0

1

 

·

 

 

εµ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

ελββ (β)Dβ (β, α)eαejk2(β,α)·r

sinβ dβ dα ,

(1.39)

respectively. For isotropic media, the only nonzero λ functions are λββ and λαα, and we have λββ = λαα = λ. The two waves degenerate into one (ordinary) wave, i.e., k1 = k2 = k, and the dispersion relation is

k2 = k02εµ .

Next we proceed to derive series representations for the electric and magnetic fields propagating in uniaxial anisotropic media. On the unit sphere, the tangential vector function Dα(β, α)eα −Dβ (β, α)eβ can be expanded in terms of the vector spherical harmonics mmn and nmn as follows:

∞ n

1

 

 

 

Dα(β, α)eα − Dβ (β, α)eβ = −ε n=1 m=−n

 

[jcmnmmn(β, α)

4πjn+1

+ dmnnmn(β, α)] .

(1.40)

Because the system of vector spherical harmonics is orthogonal and complete in L2(), the series representation (1.40) is valid for any tangential vector field. Taking into account the expressions of the vector spherical harmonics (cf. (B.8) and (B.9)) we deduce that the expansions of Dβ and Dα are given by


1.3 Internal Field

27

 

 

 

n

 

 

 

1

 

 

1

|m|(β)c

 

−Dβ

(β, α) = ε

 

 

 

 

 

 

 

 

 

 

 

n=1 m=−n 4πjn+1 2n(n + 1)

n

 

mn

 

 

+ τ |m|

(β)d

mn

ej

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

1

 

 

1

jτ |m|(β)c

 

 

Dα

(β, α) =

ε

 

 

 

 

 

 

 

 

 

 

mn

 

n=1 m=−n 4πjn+1 2n(n + 1)

n

 

 

+ jmπ|m|(β)d

ej

,

 

 

 

 

 

 

 

n

 

 

 

mn

 

 

 

 

respectively. Inserting the above expansions into (1.38) and (1.39), yields the series representations

n

 

 

 

E(r) = cmnXmne

(r) + dmnY mne

(r) ,

 

 

 

 

 

 

(1.41)

 

 

 

 

 

 

 

 

 

n=1 m=−n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

h

 

 

h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ε

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H(r) = j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=1 m=−n cmnXmn(r) + dmnY mn(r) ,

 

 

 

 

(1.42)

 

 

 

 

 

 

µ

 

 

 

 

where the new vector functions are defined as

 

 

 

 

 

 

 

 

 

 

 

 

e

(r) =

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

2π π

jτ |

m

|(β)e

jk1(β,α) r

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

·

 

e

 

 

 

 

 

4πjn+1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α

 

 

 

mn

 

 

 

2n(n + 1) 0

 

0

n

 

 

 

 

 

 

 

 

 

 

 

 

+ ε [λ

(β)e

k

+ λ

ββ

(β)e

β

] |m|(β)ejk2(β,α)·r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

×ejsin β dβ dα ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1.43)

Y e

(r) =

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

2π π jmπ|m|

(β)ejk1(β,α)·r e

 

 

 

 

(1.44)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α

 

 

mn

 

 

4πjn+1 2n(n + 1) 0

 

 

 

0

 

n

 

 

 

 

 

 

 

 

 

 

 

+ ε [λ

(β)e

k

+ λ

ββ

(β)e

β

] τ |m|(β)ejk2(β,α)·r ejsin β dβ dα ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

Xh

(r) =

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

2π π τ |m|(β)ejk1

(β,α)·r e

 

 

 

(1.45)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mn

 

 

 

4πjn+1 2n(n + 1) 0

 

0

n

 

 

 

 

 

β

 

 

 

 

 

 

 

 

 

+ j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ελββ (β)n|m|(β)ejk2(β,α)·r eα

 

ejsin β dβ dα ,

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y h (r) =

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

2π π |m|(β)ejk1(β,α)·r e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mn

 

 

 

4πjn+1 2n(n + 1) 0

 

0

n

 

 

 

 

 

 

β

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ j

 

 

 

ελββ (β)τn|m|(β)ejk2(β,α)·r eα

ejsin β dβ dα .

 

 

(1.46)


28 1 Basic Theory of Electromagnetic Scattering

In (1.38)–(1.39), the electromagnetic fields are expressed in terms of the unknown scalar functions Dα and Dβ , while in (1.41) and (1.42), the electromagnetic fields are expressed in terms of the unknown expansion coe cients cmn and dmn. These unknowns will be determined from the boundary condi-

tions for each specific scattering problem. The vector functions Xe,h and Y e,h

mn mn

can be regarded as a generalization of the regular vector spherical wave functions M 1mn and N 1mn. For isotropic media, we have ελββ = 1, λ= 0 and k1 = k2 = k, and we see that both systems of vector functions are equivalent:

Xe

(r) = Y h

(r) = M 1

(kr) ,

 

mn

mn

mn

 

 

Y e

(r) = Xh

(r) = N 1

(kr) .

(1.47)

mn

mn

mn

 

 

As a result, we obtain the familiar expansions of the electromagnetic fields in terms of vector spherical wave functions of the interior wave equation:

∞ n

 

 

E(r) = cmnM mn1

(kr) + dmnN mn1

(kr) ,

n=1 m=−n

 

 

 

 

∞ n

1

1

ε

 

 

 

H(r) = j µ n=1 m=−n cmnN mn (kr) + dmnM mn(kr) .

Although the derivation of Xemn,h and Y emn,h di ers from that of Kiselev et al. [119], the resulting systems of vector functions are identical except for a multiplicative constant. Accordingly to Kiselev et al. [119], this system of vector functions will be referred to as the system of vector quasi-spherical wave functions. In (1.43)–(1.46) the integration over α can be analytically performed by using the relations

ek = sin β cos αex + sin β sin αey + cos βez ,

eβ = cos β cos αex + cos β sin αey sin βez ,

eα = sin αex + cos αey ,

and the standard integrals

Im (x, ϕ) =

2π ejx cos(α−ϕ)ejmα dα = 2πjmejJm (x) ,

 

 

 

 

0

 

 

 

 

 

 

 

 

 

Imc

(x, ϕ) =

2π cos αejx cos(α−ϕ)ejdα = π jm+1ej(m+1)ϕJm+1 (x)

 

 

0

 

 

 

 

 

 

 

 

 

 

 

+ jm−1ej(m−1)ϕJm−1 (x) ,

 

 

 

 

 

s

 

 

2π

jx cos(α ϕ)

j

dα = jπ

m+1

 

j(m+1)ϕ

 

 

Im

(x, ϕ) =

0

sin αe

e

 

j

e

 

Jm+1

(x)

jm−1ej(m−1)ϕJm−1 (x) ,



1.3 Internal Field

29

where (ex, ey , ez ) are the Cartesian unit vectors and Jm is the cylindrical Bessel functions of order m. The expressions of the Cartesian components of the vector function Xemn read as

Xe

(r) =

 

 

 

1

1

π

jτ |m|(β)Is

(x

, ϕ)ejy1(r,θ,β)

 

 

 

 

 

 

 

 

 

 

mn,x

 

 

4πjn+1 2n(n + 1)

0

n

m

 

1

 

 

 

 

+ε [λββ (β) cos β + λ(β) sin β] n|m|(β)

 

 

 

 

 

× Imc (x2, ϕ)ejy2(r,θ,β) sin β dβ

 

 

 

(1.48)

Xe

 

(r) =

1

1

 

π jτ |m|(β)Ic (x

, ϕ)ejy1(r,θ,β)

 

 

 

 

 

 

 

 

 

mn,y

 

 

4πjn+1 2n(n + 1) 0

 

n

m

1

 

 

+ε [λββ (β) cos β + λ(β) sin β] n|m|(β)

 

× Ims (x2, ϕ)ejy2(r,θ,β)

sin β dβ ,

(1.49)

e

(r) =

1

 

 

 

 

1

 

π

ε [λ(β) cos β − λββ (β) sin β]

Xmn,z

 

 

 

 

 

 

 

4πjn+1

 

 

 

 

 

2n(n + 1)

0

 

×

|m|(β)I

m

(x

, ϕ)ejy2(r,θ,β) sin β dβ ,

(1.50)

 

 

n

2

 

 

 

 

where x1(r, θ, β) = k1r sin β sin θ, x2(r, θ, β) = k2(β)r sin β sin θ, y1(r, θ, β) = k1r cos β cos θ and y2(r, θ, β) = k2(β)r cos β cos θ, while the expressions of the Cartesian components of the vector functions Y emn are given by (1.48)–(1.50)

with n|m| and τn|m| interchanged. Similarly, the Cartesian components of the vector function Xhmn are

Xh

 

(r) =

 

1

 

 

 

 

 

 

1

 

 

π τ |m|(β) cos βIc

(x

, ϕ)ejy1(r,θ,β)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mn,x

 

4πjn+1 2n(n + 1)

0

n

 

 

m

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j

 

ελ

ββ

(β)|m|(β)Is

(x

, ϕ)ejy2(r,θ,β)

sin β dβ ,

(1.51)

 

 

 

 

 

 

 

 

 

 

 

n

 

 

m

2

 

 

 

 

 

 

 

Xh

 

(r) =

 

1

 

 

 

 

 

 

1

 

 

π τ |m|(β) cos βIs

(x

, ϕ)ejy1(r,θ,β)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mn,y

 

4πjn+1 2n(n + 1)

0

n

 

 

m

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ j

 

ελββ (β)n|m|(β)Imc (x2, ϕ)ejy2(r,θ,β)

sin β dβ ,

(1.52)

Xh

(r) =

 

1

 

 

 

 

 

 

 

 

1

 

π τ |m|(β)I

 

(x

, ϕ)ejy1(r,θ,β) sin2 β dβ ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mn,z

 

 

4πjn+1 2n(n + 1)

0

n

 

 

m

1

 

 

 

 

(1.53)