Файл: Карцев. Приключения великих уравнений.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 402

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

13 Июля 1798 года корабль ост-индской компании «Добрая надежда» сильно пострадал от шаровой молнии, при взрыве один матрос был убит, другой ранен, на палубе произведены серьезные разрушения.

10 Августа 1880 года в Невере шаровая молния попала в каминную трубу, в которой впоследствии нашли черный камень величиной с кулак, очень легкий и ноздреватый, похожий на губку.

10 Сентября 1861 года пассажиры одного из французских поездов заметили на проводе телеграфной линии красный шар величиной с кулак. Добравшись до столба, шар переломил его и исчез.

19 Документов касаются денежных затруднений Ломоносова, задержки ему жалованья, просьб Ломоносова о выдаче ему в счет жалованья денег «для расплаты долгов и пропитанья».

5 Ноября 1879 года его не стало. Доктор Пагет, принявший его последний вздох, писал:

Ученый, открытый в библиотеке

2. Г. Новый академик показал, что будто бы в физическом кабинете нет термометра, но я утверждаю, что он видел три термометра...»

Электричество со знаками «плюс» и «минус»

Планета в поисках энергии

Впущение червя во яблоко

Маркони был далек от таких альтруистических представлений – он патентовал все, что попадалось под руку, а под руку попадалось не всегда свое. Так, его же патент, дающий ему полное право эксплуатации своего «изобретения», содержал в качестве составляющих элементов никем не запатентованные ранее и считавшиеся общим достоянием, достоянием науки разрядник, когерер и другие элементы. Получилось, что он воспользовался трудами других для личного обогащения. Научные дискуссии, ранее украшавшие научные журналы, были тем самым круто оборваны; они заменились судебными разбирательствами о владении патентами. Маркони твердо и бесповоротно стал «патентодержателем», изобретателем чисто американского образца – образца Эдисона, Белла и Вестингауза.

Это не значит, конечно, что роль таких людей, как Маркони, в развитии общества невелика. Она громадна. Однако поступок «патентодержателя» Маркони, присвоившего себе труды других, встретил единодушное осуждение людей науки. Многие открыто выражали ему свое презрение. Антипатия еще более возросла, когда она перестала уравновешиваться той прогрессивной ролью, которую Маркони поначалу играл в истории развития радио. Став миллионером, Маркони и думать забыл о гуманной миссии, взятой на первых порах, и вместо того, пользуясь своим монопольным владением акциями радиотелеграфных компаний, стал придерживать конкурентов и тем самым объективно тормозить то великое дело, которому он (правда, совсем не бескорыстно) посвятил свои молодые годы.

Такие одиозные формы деятельности Маркони, конечно, не внушают симпатии; тем не менее как бы мы ни относились лично к синьору Маркони, необходимо беспристрастно оценить его роль в истории радио. Вряд ли у кого-либо есть серьезные основания считать, что Маркони просто скопировал схему Попова. По-видимому, он пришел к ней самостоятельно, кроме того, он но ограничился первой заявкой, довел свои приборы до высокой степени совершенства, повысил до немыслимых тогда пределов дальность радиопередач и в немалой степени содействовал тому, что радио прочно вошло в быт людей; поэтому, как пишут советские исследователи А.Т. Григорьян и А.Н. Вяльцев, «это заставляет считать изобретателем радио в равной мере и Попова и Маркони, и, значит, в памяти людей имена и образы этих двух изобретателей всегда должны стоять рядом».

Начало работы Попова над высокочастотными электрическими разрядами относится еще к 1888 году – он приступил к ней сразу же после сообщений об опытах Герца. В физической лаборатории Минного класса, одной из лучших электротехнических лабораторий России, Попов воспроизвел все опыты Герца и сразу же увидел их сильные и слабые технические стороны.


Сильная сторона опытов была в колоссальных перспективах, в них заключенных. Попов сразу же оценил их, и в первую очередь то, что аппаратура Герца в принципе давала возможность сигнализации на расстоянии.

Слабая сторона была в том, что практически установка Герца таких возможностей не давала: сигналы в приемнике – искры – были настолько слабы, что увидеть их мог только поистине великий экспериментатор, да и то долго всматриваясь в темноте, ценой своего здоровья, а в конечном итоге – и жизни. Максимальное расстояние, на котором можно еще было с колоссальным трудом различить искры, вызванные «волнами Герца», составляло 20 метров.

Герц и сам понимал слабую сторону своих экспериментов. Пытаясь увеличить чувствительность приемника, он попробовал заменить искровой промежуток лягушачьей лапкой, когда другие приборы были бессильны. Однако опыт был безуспешен – лапка оставалась неподвижной даже непосредственно вблизи «передатчика» – вибратора Герца.

К сожалению, Герц «не зафиксировал» в своем мозгу небольшую заметку, промелькнувшую в физическом журнале. В 1884 году физик Кальцекки-Онести обнаружил, что находящиеся вблизи электрического разряда металлические порошки резко изменяли свои свойства. Когда разряда не было, они плохо проводили электрический ток, но когда разряд появлялся, порошок как бы «склеивался», и в таком состоянии электрический ток проходил через него блестяще.

Впоследствии это использовал французский физик-Эдуард Бранли: он насыпал порошок в стеклянную трубочку и, поместив ее вблизи разряда, наблюдал, насколько резко изменятся свойства порошка. При окончании разряда частицы порошка не «расклеивались» и продолжали служить хорошим мостиком для электрического тока. Чтобы «расклеить» слипшиеся частицы, достаточно было легонько стукнуть по стеклянной трубке пальцем (а лучше – встряхнуть, как градусник). Бранли не оценил своего изобретения и сообщил об этом лишь с целью предохранить других исследователей порошков от досадных промахов.

Мысль использовать стеклянную трубочку с металлическим порошком для регистрации электромагнитных волн пришла в голову англичанину сэру Оливеру Лоджу. Он, по сути дела, использовал трубку Бранли, но назвал ее «когерером» – «сцеплятелем». Заслугой Лоджа было то, что он привлек когерер к исследованию воли Герца, заметив: «Когерер удивительно чувствителен к волнам Герца». Неприятному свойству порошков не расклеиваться Лодж противопоставил детище средних веков – часовой механизм; через определенные промежутки времени трубка встряхивалась.


Лодж исследовал физические процессы, связь на расстоянии его не привлекала, он считал идею бредовой.

При дальнейшем усовершенствовании когерер обещал быть весьма полезным устройством при далеком приеме «волн Герца». Встала, таким образом, чисто изобретательская задача – усовершенствовать когерер и применить его для дальнего приема.

Едва узнав о когерере, Попов сразу же отбросил использовавшиеся им ранее «карусели» – радиометры, термоскопы, искровые промежутки, не требующие затемнения, и прочие замысловатые приборы – и полностью переключился на усовершенствование когерера с целью использовать его в практическом устройстве, которое могло бы применяться для сигнализации на расстоянии.

Многие исследователи видят здесь общность задач Попова и Эдисона: и тот и другой уже имели перед глазами несовершенные устройства, в принципе способные и принимать радиосигналы, и излучать электрический свет. Задачей изобретателей было превратить эти несовершенные устройства в совершенные, другими слезами, изобрести радио и электрическую лампу. Нечего и говорить о том, насколько сложнее была задача Попова.

Как четко уже в 1888...1889 годах Попов понимал свою задачу, можно судить из его собственных слов: «Человеческий организм не имеет еще такого органа чувств, который замечал бы электромагнитные волны в пространстве. Если бы изобрести такой прибор, который заменил бы нам электромагнитное чувство, то его можно было бы применять и в передаче сигналов на расстоянии».

Статья Лоджа в английском журнале «Электрик» была получена Поповым осенью 1894 года. Именно период с осени 1894 года и до 7 мая 1895 года и был наиболее напряженным и плодотворным в жизни Попова.

Он взялся за усовершенствование когерера. Вместе со своим помощником Рыбкиным он испробует сотни порошков (точно так же, как Эдисон испытал сотни материалов, пригодных быть нитью электролампы) самого различного состава и помола: частицы мелкие, средние, крупные вещества чистые, перемешанные, подогретые и холодные, толченые и прессованные, восстановленные и окисленные; испытаны были дробь, кольца, цепочки. Таких материалов – многие тысячи. Если бы Попов поступил, как Эдисон, пробуя их все подряд, вряд ли он скоро добился бы успеха. Но Попов умело (и удачно) распределил материалы по классам, группам и отрядам, обладающим сходными свойствами. Это позволило сэкономить время. Оказалось, что плох и грубый помол, и слишком мелкий; оказалось, что на частицах должен быть обязательно слой окиси, но не слишком толстый. Круг неуклонно сужался до тех пор, пока внутри не оказался лишь один порошок – «феррум пульвератум». Он обеспечивал хорошую чувствительность, а главное – стабильность.


Теперь нужно было выбрать «оболочку», в которую можно было бы засыпать порошок. Эта задача также не простая. Сотни вариантов привели к одному – -стеклянной трубке толщиной в палец. Внутри, на стенках – две платиновые палочки, концы которых выведены наружу. В трубке – тот самый «феррум пульвератум».

Теперь нужно было решить проблему встряхивания когерера, ту самую проблему, которую Лодж решил в лоб – с помощью часового механизма, время от времени «приводившего когерер в себя». Лучшим оказалось решение, которое пришло Попову в голову всего через несколько часов после получения статьи Лоджа. Тогда он включил в цепь когерера старый стрелочный гальванометр. Когда производился разряд, металлический порошок из плохого проводника превращался в хороший, по нему начинал идти ток, поворачивающий стрелку гальванометра. Резкое движение стрелки встряхивало когерер, и он был готов к приему нового сигнала. Это была, как теперь говорят, схема «обратной связи», первая радиосхема. Так из несовершенных приборов Герца родилось настоящее радио, хотя, по современным понятиям, и весьма примитивное.

Когда гальванометр был заменен электромагнитным реле со звонком, а стрелка – молоточком, подсоединенным к якорю реле, вся схема приемника практически уже приобрела вид, столь впоследствии распространенный.

Что касается передатчика, он уже существовал – вибратор Герца вполне мог выполнять его функции. Короткие и длинные сигналы, а также их комбинации вполне могли быть использованы для сигнализации на расстоянии.

Поиски наибольшей дальности приема привели и к первой антенне – к вертикальному медному стержню, включенному в схему приемника.

Все описанные усовершенствования способствовали невиданному по тем временам увеличению дальности приема волн вибратора Герца, примерно до 80 метров. Впервые публично показаны были приборы 7 мая 1895 года, в день, который мы отмечаем как День радио.

А через год на берегах туманного Альбиона высаживается двадцатидвухлетний Гульельмо Маркони.

Имеется фотография Маркони тех лет. Перед ним «черный ящик», в котором размещена секретная схема приемника. Секрет «черного ящика» будет сохраняться еще довольно долго – до тех пор, пока 4 июня 1897 года принципы «телеграфирования без проводов» не будут доложены на лекции в Королевском институте.

Итак, до 4 июня 1897 года Попов не мог ничего знать о принципах, использованных Маркони.

А когда узнал, поразился, насколько совпали две схемы, схема Маркони и схема Попова.


Тот же когерер.

То же устройство для встряхивания когерера – молоточек, работающий от реле.

Та же схема обратной связи – сам сигнал «встряхивает» когерер, делая его пригодным для принятия следующего сигнала.

Та же антенна.

Скорее всего, это доказательство единого пути развития науки. Но в принципе, как доказательно рассматривается в труде профессора И.В. Бренева «Изобретение радио А.С. Поповым», Маркони вполне мог знать или слышать о трудах Попова. Попов – не мог, Маркони – мог!

Попов внимательно следит за успехами Маркони, хотя всегда напоминает о том, что аппаратура Маркони является копией его собственной, изобретенной на год раньше. Специальные комиссии, Бранли и Лодж, электротехнические конгрессы полностью признали приоритет Попова. Не признали его Англия, Италия и сам Маркони.

Несмотря ни на что, Попов всегда относился к Маркони и его деятельности доброжелательно.

12 июля 1902 года итальянский корабль «Карло Альберто» бросил якорь вблизи суровых бастионов Кронштадта. На борту корабля находился и Маркони со своей аппаратурой – с ее помощью он мог принимать сигналы, идущие из Англии, на расстоянии 1 600 морских миль.

Через несколько дней на борт корабля поднялся болезненного вида рыжебородый человек – он казался гораздо старше своих 43 лет. Двадцативосьмилетний процветающий Гульельмо Маркони был рад этому визиту гораздо больше, чем посещению его радиорубки за несколько дней до того русским императором. Это был Александр Степанович Попов. Попов был приветлив, с интересом осмотрел радиорубку, тепло простился. Добрые чувства к Маркони Попов сохранял всю жизнь.

Увы, здоровье Попова становилось все хуже и хуже, 13 января 1906 года, после бурного объяснения с министром внутренних дел, печально известным Дурново, последовало роковое кровоизлияние в мозг.

Всего за четыре дня до смерти он был избран председателем Русского физического общества – высшая честь, которой мог удостоиться электроинженер Александр Степанович Попов, изобретатель радио.

Нобелевский лауреат 1909 года Гульельмо Маркони умер 20 июля 1937 года в Риме, окруженный почетом и вниманием, увенчанный лаврами академий и университетов. Его богатство началось с организации компании по эксплуатации его изобретения и расширению сети радиостанций. Его слава была громкой и разной. С одной стороны, грандиозный «скандал Маркони», в котором оказалось замешанным чуть ли не всё правительство Англии, с другой – спасение благодаря аппаратам Маркони жертв несчастного «Титаника».