Файл: Роль техники в становлении классического математизированного и экспериментального естествознания и в современном неклассическом естествознании..docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 24.11.2023
Просмотров: 79
Скачиваний: 3
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
ФИЛИАЛ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО АВТОНОМНОГО ОБРАЗОВАТЕЛЬНОГО
УЧРЕЖДЕНИЯ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»
ДОКЛАД
на тему: «Роль техники в становлении классического математизированного и экспериментального естествознания и в современном неклассическом естествознании.»
Выполнил: | Студент 1 курса аспирантуры |
Б.И. Нургатин | |
| |
|
г. Набережные Челны
2022 г.
1. Роль техники в становлении классического математизированного и экспериментального естествознания и в современном неклассическом естествознании.
Наука отличается от ТЕХНИКИ тем, что нацелена не на использование полученных знаний о мире для его преобразования, а на познание мира.
В ходе исторического развития техническое действие и техническое знание постепенно отделяются от мифа и магического действия, но первоначально опираются еще не на научное, а лишь на обыденное сознание и практику.
Техника и технологии периода неклассической науки в основном носили еще "классический" характер. Из всего многообразия технологического развития необходимо выделить главное: в XX в. это развитие стремительно шло к интеграции различных направлений в единую техносферу с взаимозависимыми функциональными частями, охватывавшими всю планету и околоземное пространство (глобальный транспорт, глобальная связь, глобальное перераспределение энергетических и сырьевых ресурсов и т.д.) и все стадии трансформации вещества, энергии и информации. Решающее влияние на становление структурной техники и технологии и на темпы этого становления в XX в. оказали две мировые войны, цикл локальных войн и глобальное противостояние двух политических систем.
Из всех наук механика была наиболее тесно связана с техникой. Она раньше всех разделилась на теоретическую и прикладную. Появляются новые конструктивно-технические элементы, технологические приемы и, следовательно, технологические знания, применяемые в производстве. В исследовании различных свойств вещества и энергии нуждались металлообрабатывающая промышленность, стеклодувная, текстильная и т.д. Выдвижение механики на первый план произошло в соответствии с особенностями процесса познания, т.к. механика изучает простейшую форму движения - перемещение. Коренные преобразования в мануфактурном производстве в условиях зарождавшегося капитализма привели к возникновению современного естествознания.
Новый этап в естествознании, начавшийся в конце прошлого столетия рядом крупнейших открытий, таких, как радиоактивность, строение атома и ядра атома, привел к коренной ломке старых представлений о строении вещества, о свойствах материи, пространства и времени. Следующая ступень рационального обобщения техники находит свое выражение в появлении технических наук (технических теорий). Такое теоретическое обобщение отдельных областей технического знания в различных сферах техники происходит прежде всего в целях научного образования инженеров при ориентации на естественнонаучную картину мира. Научная техника означала на первых порах лишь применение к технике естествознания. В XIX веке "техническое знание было вырвано из вековых ремесленных традиций и привито к науке, - писал американский философ и историк Э. Лейтон. - Техническое сообщество, которое в 1800 г. было ремесленным и мало отличалось от средневекового, становится "кривозеркальным двойником" научного сообщества. На передних рубежах технического прогресса ремесленники были заменены новыми фигурами - новым поколением ученых-практиков. Устные традиции, переходящие от мастера к ученику, новый техник заменил обучением в колледже, профессиональную организацию и техническую литературу создал по образцу научной". Итак, техника стала научной - но не в том смысле, что безропотно теперь выполняет все предписания естественных наук, а в том, что вырабатывает специальные - технические - науки. Наиболее ярко эта линия развития выразилась в программе научной подготовки инженеров в Парижской политехнической школе. Это учебное заведение было основано в 1794 г. математиком и инженером Гаспаром Монжем, создателем начертательной геометрии. В программу была заложена ориентация на глубокую математическую и естественнонаучную подготовку будущих инженеров. Не удивительно, что Политехническая школа вскоре стала центром развития математики и математического естествознания, а также технической науки, прежде всего прикладной механики.
2.Роль техники в естествознании.
Суть научного метода в технике состоит в том, чтобы поставить природные тела в такие обстоятельства, когда их действие, происходящее в соответствии с законами природы, будет одновременно соответствовать нашим целям. Когда эту задачу начали выполнять сознательно, возникла новейшая научная техника. Переход к научной технике был, однако, не однонаправленной трансформацией техники наукой, а их взаимосвязанной модификацией, поскольку не только наука повлияла на становление норм современного инженерного мышления, но и инженерная деятельность оказала заметное влияние на формирование нового идеала научности. Под влиянием инженерной деятельности, например, меняется
представление о научном опыте и его содержании, куда входит уже не только простое наблюдение, но и инженерно подготавливаемый эксперимент. Галилей употребляет понятие «опыт» как в смысле ежедневного опыта, обычного наблюдения за ходом природных явлений и за функционированием искусственных сооружений, так и в плане инженерного опыта, или эксперимента, который он разделяет на мысленный (на чертеже или без чертежа, технически осуществимый или неосуществимый) и реальный. Реальный эксперимент заключается в разработке и создании специального экспериментального оборудования, проведении на нем планомерных опытов и наблюдений за его функционированием. В этом и состоит подлинное научное объяснение природных явлений с помощью искусственного воспроизведения их внешнего действия. При этом опыты должны производиться не случайно, а, по словам Декарта, тщательно готовиться проницательными людьми, способными правильно их произвести. В результате формируется новая фигура ученого-экспериментатора. Одним из первых таких ученых был Р. Гук, который в «Трактате об экспериментальном методе» неизменно восхваляет большую научную роль приборов и инструментов и прежде всего как средства против ошибок чувственного опыта, превознося «верную руку» и «добросовестный глаз» и подчеркивая необходимость знакомства ученого со всевозможными ремеслами и искусствами.
Влияние инженерного мышления сказалось не только на экспериментальной деятельности ученых, но и на самих научных представлениях. Чтобы осуществить эксперимент, необходимо уметь искусственно вызывать явления в возможно простом и чистом виде. Такой подход связан с идеализированным искусственно-естественным представлением, свойственным именно инженерному мышлению. Для эксперимента необходимо создать искусственные условия, которые не наблюдаются в природе. Например, Галилей не просто наблюдает за происходящими в природе процессами, а сначала строит искусственную идеализированную ситуацию, отвлекаясь от ее выполнимости техническими средствами, но принципиально реализуемую, хотя и не имеющую места в природе. Затем он разрабатывает проект технически реализуемой экспериментальной ситуации, скажем маятника, где сила тяжести отделена от приложенной к телу силы, и, наконец, на основе этого проекта может быть проведен реальный эксперимент. В свою очередь, искусственно созданные в эксперименте ситуации сами должны быть представлены и описаны в научном плане как определенные естественные процессы.
Рассуждая о механиках-практиках, Ньютон, к примеру, пишет, что тяжесть рассматривалась ими не как сила, а как грузы, движимые машинами, а его самого как ученого-естествоиспытателя, исследующего не ремесла, а учение о природе, интересуют не усилия, производимые руками, а силы природы, другими словами, в науке искусственно воссозданным экспериментальным ситуациям должен быть придан естественный модус. Без этого полученные в эксперименте результаты нельзя считать научными. Следовательно, даже в эксперименте главный акцент должен делаться на естественном, в то время как в инженерной деятельности - на искусственном, хотя им обоим присуща «естественно-искусственная» позиция. Это объясняется различием задач экспериментальной и инженерной деятельностей: основная цель эксперимента - обосновать с помощью искусственных средств теоретически выведенные естественные законы, цель же инженерной деятельности, учитывая эти законы, создать искусственные технические средства и системы для удовлетворения определенных человеческих потребностей. В этом и выражается сходство и взаимовлияние экспериментального естествознания и инженерной деятельности, выполняющих вместе с тем различные функции в современной культуре и имеющих разную направленность.
Таким образом, инженерно-проектная установка проникает в сферу научных, в том числе физических, исследований, считающихся носителем господствующего до сих пор в сознании многих ученых образа науки. Это относится не только к классическому, но и к современному неклассическому естествознанию, которое демонстрирует тесную связь теоретического исследования не только с экспериментом, но и с техническими применениями. Именно современная неклассическая физика продемонстрировала, какое огромное влияние на технические приложения может оказать математизированное естествознание. Например, развитие ядерной физики непосредственно привело к практическим техническим результатам как в военной сфере, так и в области мирного использования атомной энергии, где эксперимент непосредственно перерастает в отрасль промышленности. Да и сам эксперимент представляет собой сложнейшую область не только науки, но и техники. В США до Второй мировой войны в инженерном образовании господствовала преимущественная ориентация на практическую, а не теоретическую подготовку инженеров. В новых же областях техники, развившихся преимущественно во время войны (техника сантиметровых волн, импульсная и компьютерная техника и т.п.), где практический опыт не компенсировал теоретических знаний, например квантовой механики, основной вклад в их развитие сделали физики. Они не имели опыта работы в области техники, но были достаточно основательно подготовлены в теоретической физике и математике.
Связь теоретической науки с промышленностью, инженерными приложениями является благотворной не только для техники, но и для самой науки. Очевидным подтверждением этому тезису служат космические исследования и космическая техника. Широкое использование компьютерной техники во всех областях науки и техники сопровождается перенесением принципов, например самоорганизации, обобщенных в кибернетике, на системы неживой природы, причем способ функционирования таких систем подчиняется одним и тем же основополагающим принципам, независимо оттого, относятся они к области физики, химии, биологии или даже социологии. Например, такие процессы самоорганизации вблизи лазерного источника света описываются лазерной физикой, причем лазер - это технический прибор, созданный именно на основе представлений неклассической физики.
Часто влияние техники на естествознание связывается с критикой механистических объяснений, причем утверждается, что, например, процессы саморегулирующегося гомеостазиса, характерные для живого, невозможно объяснить механически. Однако в настоящее время описание саморегулирующихся гомеостатических устройств стало общим местом в кибернетике. Механистическое объяснение, если его понимать как описание механизма природных явлений, не следует отождествлять с представлением мировой механики в виде пружинных часов с классическим передаточным механизмом. С помощью такого рода аналогий, конечно, сегодня не могут быть научно объяснены природные явления, но ведь и современные часы выглядят иначе - они стали электронной схемой с микропроцессором. Важно не отождествлять описание механизма природных явлений с редукцией их к одному-единственному основополагающему уровню (например, физико-химическому или атомному), признавать сложность связей элементов и взаимодействий в анализируемой системе и не считать приведенный на данном уровне развития науки список таких механизмов исчерпывающим.
3. Роль техники в становлении нового естествознания.
Рассмотрим более конкретно, в чем именно сказалось значение техники в период становления нового естествознания (в XVII в.). С начала Нового времени приходит новое мировоззрение, или «метафизическая революция», когда мир начинает рассматриваться как однородное, бесконечное, геометрическое пространство, заполненное материей, движущейся по механическим законам. В этом мировоззренческом повороте техника играла важнейшую и комплексную роль.