Файл: Урок обобщающего повторения по теме Параллельность прямых и плоскостей в пространстве.pptx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 02.12.2023

Просмотров: 34

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Аксиомы группы С.

Какова бы ни была плоскость, существуют точки, принадлежащие этой плоскости, и точки, не принадлежащие ей.

Аксиомы группы С.

Если две различные плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку.

Аксиомы группы С.

Если две различные прямые имеют общую точку, то через них можно провести плоскость, и притом только одну.

Теорема о параллельных прямых.

Определите: верно, ли утверждение?

1. если плоскости не пересекаются, то они параллельны.

2. плоскости параллельны, если прямая лежащая в

одной плоскости, параллельна другой плоскости?

3. если две прямые, лежащие в одной плоскости, параллельны двум прямым другой плоскости,

то эти плоскости параллельны?

4. если прямая перпендикулярна одной из двух параллельных плоскостей, то она

перпендикулярна и другой плоскости.

5. прямые, по которым две параллельные плоскости пересечены третьей плоскостью, параллельны.

6. Если прямая пересекает одну из двух плоскостей, то

она пересекает и другую.

7. Две плоскости, параллельные третьей, параллельны.

8. Отрезки прямых, заключенные между

параллельными плоскостями, равны.

источник шаблона.

источник шаблона.

Автор:

Ермолаева Ирина Алексеевна

учитель информатики и математики

МОУ «Павловская сош»

с.Павловск

Алтайский край

Название сайта: http://www.nsportal.ru/shkola/informatika-i-ikt/library/shablon-matematicheskii-dlya-oformleniya-prezentatsii-mspowerpoint

6. Если прямая пересекает одну из двух плоскостей, то

она пересекает и другую.

7. Две плоскости, параллельные третьей, параллельны.

8. Отрезки прямых, заключенные между

параллельными плоскостями, равны.


ДА

НЕТ

ДА

НЕТ

ДА

НЕТ

НЕТ

ДА

Через данную точку А провести плоскость, параллельную данной плоскости α, не проходящей через точку.

α

β

А

Решение.

1. В плоскости α возьмем т. В.

2. Проведем прямые ВС и ВD.

В



С1

D1

D

С

3. Построим вспомогательную плоскость через точку А и прямую ВD, в ней проведем прямую АD1 ВD.

4. Аналогично построим вспомогательную плоскость через точку А и прямую ВС, в ней проведем прямую АС1 ВС.



5. Через прямые АD1 и АС1 проведем плоскость β

Задача 2. Доказать, что через каждую из двух скрещивающихся прямых можно провести плоскость так, чтобы эти плоскости были параллельны.

а

в

Пусть а скрещивается с в.

Доказательство:

На прямой в возьмем т. А,

А

через прямую а и т. А проведем плоскость,

в этой плоскости через т. А проведем прямую в1 , в1  в.

Через в1в проведем плоскость α.

.

в1

Аналогично строим плоскость β.

По признаку параллельности плоскостей α  β.

.

источник шаблона.

источник шаблона.

Автор:

Ермолаева Ирина Алексеевна

учитель информатики и математики

МОУ «Павловская сош»

с.Павловск

Алтайский край

Название сайта: http://www.nsportal.ru/shkola/informatika-i-ikt/library/shablon-matematicheskii-dlya-oformleniya-prezentatsii-mspowerpoint


pptcloud.ru