Файл: Основы нефтедобычи.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 04.12.2023

Просмотров: 297

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА НЕФТИ, ПРИРОДНОГО ГАЗА, УГЛЕВОДОРОДНОГО КОНДЕНСАТА И ПЛАСТОВЫХ ВОД

1.1. ГАЗЫ НЕФТЯНЫХ И ГАЗОВЫХ МЕСТОРОЖДЕНИЙ И ИХ ФИЗИЧЕСКИЕ СВОЙСТВА

1.2.ФИЗИЧЕСКАЯ ХАРАКТЕРИСТИКА ГАЗОВ НЕФТЯНЫХ И ГАЗОВЫХ МЕСТОРОЖДЕНИЙ

1.3.ВЛАГОСОДЕРЖАНИЕ И ГИДРАТЫ ПРИРОДНЫХ ГАЗОВ СОСТАВ ГИДРАТОВ ПРИРОДНЫХ ГАЗОВ

1.4.СОСТАВ И НЕКОТОРЫЕ СВОЙСТВА ВОД НЕФТЯНЫХ И ГАЗОВЫХ МЕСТОРОЖДЕНИЙ

2. ОСНОВНЫЕ СВЕДЕНИЯ О НЕФТЯНЫХ, ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ МЕСТОРОЖДЕНИЯХ

2.1.ГРАНУЛОМЕТРИЧЕСКИЙ (МЕХАНИЧЕСКИЙ) СОСТАВ ПОРОД

2.2. ОСНОВЫ РАЗРАБОТКИ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ И ЭКСПЛУАТАЦИЯ СКВАЖИН

2.3.ТЕМПЕРАТУРА И ДАВЛЕНИЕ В ГОРНЫХ ПОРОДАХ И СКВАЖИНАХ

3.УСЛОВИЯ ПРИТОКА ЖИДКОСТИ И ГАЗА В СКВАЖИНЫ

3.1. ФОНТАННАЯ ЭКСПЛУАТАЦИЯ НЕФТЯНЫХ СКВАЖИН

3.1.1. Роль фонтанных труб

3.1.2. Оборудование фонтанных скважин

3.1.3. Оборудование для придусмотрения открытых фонтанов

3.1.4. Освоение и пуск в работу фонтанных скважин

3.1.5. Борьба с отложением парафина в подъемных трубах

3.2. ГАЗЛИФТНАЯ ЭКСПЛУАТАЦИЯ НЕФТЯНЫХ СКВАЖИН

3.2.1. Область применения газлифта

3.2.2. Оборудование устья компрессорных скважин

3.2.3. Периодический газлифт

3.3. НАСОСНАЯ ЭКСПЛУАТАЦИЯ СКВАЖИН

3.3.1. Штанговые скважинные насосные установки (ШСНУ)

3.3.2. Штанговые скважинные насосы

3.4. ЭКСПЛУАТАЦИЯ СКВАЖИН ПОГРУЖНЫМИ ЭЛЕКТРОЦЕНТРОБЕЖНЫМИ НАСОСАМИ

3.5. ИССЛЕДОВАНИЕ ГЛУБИННО-НАСОСНЫХ СКВАЖИН И ДИНАМОМЕТРИРОВАНИЕ СКВАЖИННЫХ НАСОСНЫХ УСТАНОВОК

3.5.1. Динамометрирование установок

3.6. ПОНЯТИЕ О РАЗРАБОТКЕ НЕФТЯНЫХ И ГАЗОВЫХ СКВАЖИН

3.6.1. Сетка размещения скважин

3.6.2. Стадии разработки месторождений

3.6.3. Размещение эксплуатационных и нагнетательных скважин на месторождении

4. ПРОМЫСЛОВЫЙ СБОР И ПОДГОТОВКА НЕФТИ, ГАЗА И ВОДЫ

5. ПОНЯТИЕ ОБ ЭКСПЛУАТАЦИИ ГАЗОВЫХ СКВАЖИН

ОБЩИЕ ПОНЯТИЯ О ПОДЗЕМНОМ И КАПИТАЛЬНОМ РЕМОНТЕ СКВАЖИН

8. ДАЛЬНИЙ ТРАНСПОРТ НЕФТИ И ГАЗА

ЛИТЕРАТУРА



Станки-качалки - индивидуальный механический привод ШСН (табл.3.2, 3.3).

Таблица 3.2


Станок-качалка

Число ходов

балансира в мин.

Масса, кг

Редуктор

СКД-1,5-710

5÷15

3270

Ц2НШ-315

СКД4-2,1-1400

5÷15

6230

Ц2НШ-355

СКД6-2,5-2800

5÷14

7620

Ц2НШ-450

СКД8-3,0-4000

5÷14

11600

НШ-700Б

СКД10-3,5-5600

5÷12

12170

Ц2НШ-560

СКД12-3,0-5600

5÷12

12065

Ц2НШ-560



В шифре станка - качалки типа СКД, например СКД78-3-4000, указано: буквы - станок качалка дезаксиальный, 8 - наибольшая допускаемая нагрузка Рmax на головку балансира в точке подвеса штанг в тоннах (1т = 10 кН); 3 - наибольшая длина хода устьевого штока в м; 4000 - наибольший допускаемый крутящий момент М кр max на ведомом валу редуктора в кгс/м ( 1 кгс/м = 10-2кН·м).

Станок-качалка (рис.3.15) является индивидуальным приводом скважинного насоса.

Таблица 3.3


Станок-качалка

Номинальная нагрузка на устьевом штоке, кН

Длина устьевого штока, м

Число качаний балансира, мин

Мощность электро-двигателя, кВт

Масса, кг

СКБ80-3-40Т

80

1,3÷3,0

1,8÷12,7

15÷30

12000

СКС8-3,0-4000

80

1,4÷3,0

4,5÷11,2

22÷30

11900

ПФ8-3,0-400

80

1,8÷3,0

4,5÷11,2

22÷30

11600

ОМ-2000

80

1,2÷3,0

5÷12

30

11780

ОМ-2001

80

1,2÷3,0

2÷8

22/33

12060

ПНШ 60-2,1-25

80

0,9÷2,1

1,36÷8,33

7,5÷18,5

8450

ПНШ 80-3-40

80

1,2÷3,0

4,3÷12

18,5÷22

12400



Основные узлы станка-качалки - рама, стойка в виде усеченной четырехгранной пирамиды, балансир с поворотной головкой, траверса с шатунами, шарнирноподвешенная к балансиру, редуктор с кривошипами и противовесами. СК комплектуется набором сменных шкивов для изменения числа качаний, т.е. регулирование дискретное. Для быстрой смены и натяжения ремней электродвигатель устанавливается на поворотной раме-салазках.

Монтируется станок-качалка на раме, устанавливаемой на железобетонное основание (фундамент). Фиксация балансира в необходимом (крайнем верхнем) положении головки осуществляется с помощью тормозного барабана (шкива). Головка балансира откидная или поворотная для беспрепятственного прохода спускоподъемного и глубинного оборудования при подземном ремонте скважины. Поскольку головка балансира совершает движение по дуге, то для сочленения ее с устьевым штоком и штангами имеется гибкая канатная подвеска 17 (рис.3.15). Она позволяет регулировать посадку плунжера в цилиндр насоса или выход плунжера из цилиндра, а также устанавливать динамограф для исследования работы оборудования.

Амплитуду движения головки балансира (длина хода устьевого штока - 7 на рис. 3.12) регулируют путем изменения места сочленения кривошипа с шатуном относительно оси вращения (перестановка пальца кривошипа в другое отверстие).

За один двойной ход балансира нагрузка на СК неравномерная. Для уравновешивания работы станка-качалки помещают грузы (противовесы) на балансир, кривошип или на балансир и кривошип. Тогда уравновешивание называют соответственно балансирным, кривошипным (роторным) или комбинированным.

Блок управления обеспечивает управление электродвигателем СК в аварийных ситуациях (обрыв штанг, поломки редуктора, насоса, порыв трубопровода и т.д.), а также самозапуск СК после перерыва в подаче электроэнергии.

Выпускают СК с грузоподъемностью на головке балансира от 2 до 20 т.


Рис. 3.15. Станок-качалка типа СКД:

1 - подвеска устьевого штока; 2 - балансир с опорой; 3 - стойка; 4 - шатун;

5 -кривошип; 6 - редуктор; 7 - ведомый шкив; 8 - ремень; 9 - электродвигатель; 10-ведущий шкив; 11 - ограждение; 12 - поворотная плита; 13 - рама; 14 –проти-вовес; 15 - траверса; 16 - тормоз; 17 - канатная подвеска
Электродвигателями к СК служат короткозамкнутые асинхронные во влагоморозостойком исполнении трехфазные электродвигатели серии АО и электродвигатели АО2 и их модификации АОП2.



Частота вращения электродвигателей 1500 и 500 мин –1.

В настоящее время российскими заводами освоены и выпускаются новые модификации станков-качалок: СКДР и СКР (унифицированный ряд из 13 вариантов грузоподъемностью от 3 до 12 т.), СКБ, СКС, ПФ, ОМ, ПШГН, ЛП-114.00.000 (гидрофицированный). Станки-качалки для временной добычи могут быть мобильными (на пневмоходу) с автомобильным двигателем.


3.4. ЭКСПЛУАТАЦИЯ СКВАЖИН ПОГРУЖНЫМИ ЭЛЕКТРОЦЕНТРОБЕЖНЫМИ НАСОСАМИ



Недостатками штанговых насосов является ограниченность глубины их подвески и малая подача нефти из скважин.

На заключительной стадии эксплуатации вместе с нефтью из скважин поступает большое количество пластовой воды, применение штанговых насосов становится малоэффективным. Этих недостатков лишены установки погружных электронасосов УЭЦН (рис. 3.16, табл. 3.4).

Погружные насосы – это малогабаритные (по диаметру) центробежные, секционные, многоступенчатые насосы с приводом от электродвигателя. Обеспечивают подачу 10÷1300 м3/сут и более напором 450÷2000 м вод.ст. (до 3000 м).

В зависимости от поперечного размера погружного агрегата, УЭЦН делят на три условные группы: 5, 5А и 6 с диаметрами соответственно 93, 103, 114 мм, предназначенные для эксплуатационных колонн соответственно не менее 121,7; 130; 114,3 мм.

Пример условного обозначения - УЭЦНМК5-50-1200, где У ‑ установка; Э ‑ привод от погружного электродвигателя; Ц ‑ центробежный; Н – насос; М ‑ модульный; К – коррозионно-стойкого исполнения; 5 – группа насоса; 50 ‑ подача, м3/сут; 1200 – напор, м.

Электродвигатели в установках применяются асинхронные, 3 фазные с короткозамкнутым ротором вертикального исполнения ПЭД40-103 - обозначает: погружной электродвигатель, мощностью 40 кВт, диаметром 103 мм. Двигатель заполняется специальным маловязким, высокой диэлектрической прочности маслом, служащим для охлаждения и смазки.

Для погружных электродвигателей напряжение составляет 380-2300 В, сила номинального тока 24,5÷86 А при частоте 50 Гц, частота вращения ротора 3000 мин –1, температура окружающей среды +50÷900С.

Модуль-секция насос – центробежный многоступенчатый, секционный. Число ступеней в насосном агрегате может составлять от 220 до 400.

При откачивании пластовой жидкости, содержащей у сетки входного модуля насоса свыше 25% (до 55%) по объему свободного газа, к насосу подсоединяется газосепаратор, который отводит в затрубное пространство часть газа из пластовой жидкости и улучшает работу насоса.

Рис. 3.16. Установка погружного центробежного насоса:

1 - оборудование устья скважин; 2 - пункт подключательный выносной; 3 - трансформаторная комплексная подстанция; 4 - клапан спускной; 5 - клапан обратный; 6 - модуль-головка; 7 - кабель; 8 - модуль-секция; 9 - модуль насосный газосепаратор; 10 - модуль исходный; 11 – протектор; 12 - электродвигатель; 13 ‑ система термоманометрическая





Рис. 3.17. Гидравлическая характеристика ПЭЦН

Таблица 3.4


Наименование установок

Минималь-ный (внутр.) диаметр эксплуатационной колонны

Попереч-ный габарит установки, мм

Пода-ча, м3/сут

Напор, м

Мощность двигателя, кВт

Тип

газосепа-ратора

УЭЦНМ5-50


121,7


112

50

990÷1980

32÷45




УЭЦНМ5-80

80

900÷1950

32÷63




УЭЦНМК5-80













УЭЦНМ5-125

125

745÷1770




1МНГ5

УЭЦНМК5-125













УЭЦНМ5-200

200

640÷1395

45÷90

1МНГК5

УЭЦНМ5А-160



130,0



124

160

790÷1705

32÷90

МНГА5

УЭЦНМ5А-250

250

795÷1800

45÷90

МНГА5

УЭЦНМК5-250













УЭЦНМ5А-400

400

555÷1255

63÷125

МНГК5А

УЭЦНМК5А-400













УЭЦНМ6-250


144,3


137

250

920÷1840

63÷125




УЭЦНМ6-320

320

755÷1545







УЭЦНМ6-500

144,3

или

148,3

137

или

140,5


500


800÷1425


90÷180




УЭЦНМ6-800

148,3

140,5

800

725÷1100

125÷250




УЭЦНМ6-1000

148,3

140,5

1000

615÷1030

180÷250