Файл: Тематический план Темы лекций Классификация тс. Телевещание. Системы персонального вызова, стандарты pocsag, ermes, flex. Транкинговые (зоновые) системы связи.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 06.12.2023

Просмотров: 502

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Классификация телекоммуникационных систем

Типы телекоммуникационных систем

Системы телевещания

Системы подвижной связи

Волоконно-оптические сети

Телевидение коллективного пользования

Принципы построения систем телевещания

Оборудование систем телевещания

Системы персонального радиовызова

Структура пейджинговых систем

Пейджинговый протокол POCSAG

Пейджинговый протокол ERMES

Пейджинговый протокол FLEX

Тенденции развития пейджинговой связи

Сети транкинговой связи

Организация транкинговой радиосвязи

Классификация сетей транкинговой связи

Принципы построения транкинговых сетей

Спутниковые системы связи

Классификация систем спутниковой связи

Принципы построения спутниковых систем связи

Краткий обзор спутниковых систем мобильной связи

Спутниковый Internet

Системы сотовой связи

Принципы функционирования систем сотовой связи

Эволюция систем сотовой связи

Аналоговые системы сотовой связи

Система сотовой связи стандарта NMT-450/900

Сотовая система подвижной связи стандарта AMPS

Система сотовой подвижной связи стандарта TACS

Цифровые системы сотовой подвижной связи

Система сотовой связи стандарта GSM

Процесс преобразования сигналов в мобильной станции

Система сотовой подвижной связи стандарта D-AMPS

Цифровые системы сотовой связи с кодовым разделением каналов

Микросотовые системы мобильной связи

Структура DECT - систем

Технические аспекты DECT

Организация протоколов DECT

Профили приложений DECT

Особенности сопряжения систем DECT с внешними сетями

Проектирование сотовых систем связи

Технология проектирования ССС

Модели распространения радиоволн

Программный пакет планирования радиосетей RPS-2

Программа моделирования сети радиосвязи deciBell Planner

Принципы построения транкинговых сетей


На рисунке 4.1 представлена обобщенная структурная схема однозоновой ТСР. В состав БС, кроме радиочастотного оборудования (ретрансляторы, устройство объединения радио­сигналов, антенны) входят также коммутатор, устройство управления (УУ) и интерфейсы к внешним сетям.

Ретранслятор - набор приемопередающего оборудования, обслуживающего одну пару несущих частот. До последнего времени в подавляющем большинстве ТСР одна пара несущих означала один канал трафика (КТ). В настоящее время, с появлением систем стан­дарта ТЕТRА и системы EDACS ProtoCALL, предусматривающих временное уплотнение, один РТ может обеспечить два или четыре КТ.

Антенны БС, как правило, имеют круговую диаграмму направленности. При располо­жении БС на краю зоны применяются направленные антенны. БС может располагать как единой приемопередающей антенной, так и раздельными антеннами для приема и передачи. В некоторых случаях на одной мачте может размещается несколько приемных антенн для борьбы с замираниями, вызванными многолучевым распространением.

Устройство объединения радиосигналов позволяет использовать одно и то же антен­ное оборудование для одновременной работы приемников и передатчиков на нескольких частотных каналах. РТ работают только в дуплексном режиме, разнос частот приема и пере­дачи составляет от 45 МГц до 3 МГц.


Коммутатор в однозоновой ТСР обслуживает весь ее трафик, включая соединение абонента с ТфОП и все вызовы, связанные с передачей данных.

Устройство управления обеспечивает взаимодействие всех узлов БС. Оно также обра­батывает вызовы, осуществляет аутентификацию вызывающих абонентов, ведение очередей вызовов, внесение записей в БД повременной оплаты. В некоторых системах УУ регулирует максимально допустимую продолжительность соединения с ТСР. Как правило, используются два варианта регулировки: уменьшение продолжительности соединения в заранее заданные
часы наибольшей нагрузки, или адаптивное изменение в зависимости от текущей нагрузки.

Интерфейс к ТфОП реализуется в ТСР различными способами. В недорогих системах (например, SmarTrunk) подключение производится по двухпроводной коммутируемой линии. Более современные ТСР имеют в составе интерфейса к ТфОП аппаратуру прямого набора номера, обеспечивающую доступ к абонентам транкинговой сети с использованием стандартной нумерации АТС. Ряд систем использует цифровое ИКМ-соединение с аппаратурой АТС.

Одной из основных проблем при регистрации и использовании транкинговых систем в России является проблема их сопряжения с ТфОП. При исходящих вызовах транкинговых абонентов в телефонную сеть сложность заключается в том, что некоторые транкинговые системы не могут набирать номер в декадном режиме по абонентским линиям в электроме­ханических АТС. Таким образом, необходимо использовать дополнительное устройство пре­образования тонального набора в декадный. Входящая связь от абонентов ТфОП к радиоабонентам оказывается также проблематичной по ряду причин. Большинство транкинговых сетей сопрягаются с телефонной сетью по двухпроводным абонентским линиям. В этом случае после набора номера ТфОП требуется донабор номера радиоабонента. Однако после полного набора номе­ра абонентской липни и замыкания шлейфа управляющим устройством транкинговой систе­мы телефонное соединение считается установленным, и дальнейший набор номера в им­пульсном режиме затруднен, а в некоторых случаях невозможен. Применяемый в системе SmarTrunk II детектор «щелчков» не гарантирует правильности импульсного донабора, так как качество приходящих из абонентской линии «импульсов-щелчков» зависит от ее элек­трических характеристик, длины и т.д.

Телефонный интерфейс ELTA 200 предназначен для сопря­жения транкинговых систем связи разных типов с ТфОП; интерфейс позволяет сопря­гать транкинговые системы связи и ТфОП по цифровым каналам (2,048 Мбит/с), трехпроводным соединительным линиям с декадным набором номера или по четырехпроводным каналам тональной частоты с системами сигнализации различных типов с ведомственными телефонными сетями.

Соединение с ТфОП является традиционным для ТСР, но в последнее время все более возрастает число приложений, предполагающих передачу данных, всвязи с чем наличие интерфейса к

сетям передачи данных (СПД) также становится обязательным.

Терминал технического обслуживания и эксплуатации располагается, как правило, на БС. Терминал предназначен для кон­троля за состоянием системы, проведения диагностики неисправностей, тарификации, внесе­ния изменений в БД абонентов. Большинство ТСР имеют возможность удаленного подклю­чения терминала через ТфОП или СПД.

Необязательными, но характерными элементами ТСР являются диспетчерские пульты (ДП). ТСР используются в первую очередь потребителями, работа которых требует наличия диспетчера - службы охраны, скорая медицинская помощь, пожарная охрана, транспортные компании, муниципальные службы. ДП могут включаться в систему по абонентским радио­каналам, или подключаться по выделенным линиям непосредственно к коммутатору БС. В рамках одной ТСР может быть организовано несколько независимых сетей связи. Пользова­тели каждой из таких сетей не будут замечать работу соседей и не смогут вмешиваться в ра­боту других сетей. Поэтому в одной ТСР могут работать несколько ДП, различным образом подключенных к ней.

Абонентское оборудование ТСР включает в себя широкий набор устройств. Как прави­ло, наиболее многочисленными являются полудуплексные PC, так как они в наибольшей степени подходят для работы в замкнутых группах. В основном это функционально ограниченные устройства, не имеющие цифровой клавиатуры. Их пользователи имеют возможность связы­ваться лишь с абонентами внутри своей рабочей группы, а также посылать экстренные вызовы диспетчеру. Существуют и полудуплексные PC с широким набором функций и цифровой клавиату­рой, но они, будучи существенно дороже, предназначены для более узкого круга абонентов.

В ТСР постепенно находит применение новый класс абонентских устройств - дуп­лексные PC, напоминающие сотовые телефоны, но обладающие значительно большей функ­циональностью по сравнению с последними.

Как полудуплексные, так и дуплексные транкинговые
PC выпускаются не только в портативном, но и в автомобильном исполнении. Как правило, выходная мощность передат­чиков автомобильных PC выше.

Относительно новым классом устройств для ТСР являются терминалы ПД. В аналого­вых ТСР терминалы ПД - это специализированные радиомодемы, поддерживающие соответ­ствующий протокол радиоинтерфейса. Для цифровых систем более характерно встраивание интерфейса ПД в АР различных классов. В состав автомобильного терминала ПД часто вклю­чают спутниковый навигационный приемник системы Global Position System (GPS), предназна­ченный для определения текущих координат и последующей передачи их диспетчеру на пульт.

В ТСР используются также стационарные PC, преимущественно для подключения ДП. Выходная мощность передатчиков стационарных PC приблизительно такая же, как у автомобильных.

Архитектура многозоновых ТСР может строиться по двум принципам. Если опреде­ляющим фактором является стоимость оборудования, используется распределенная межзо­нальная коммутация. Каждая БС в такой системе имеет свое собственное подключение к ТфОП. При необ­ходимости вызова из одной зоны в другую он производится через интерфейс ТфОП, включая процедуру набора телефонного номера. Кроме того, БС могут быть непосредственно соеди­нены с помощью физических выделенных линий связи.

Использование распределенной межзональной коммутации целесообразно лишь для систем с небольшим количеством зон и с невысокими требованиями к оперативности межзо­нальных вызовов (особенно в случае соединения через коммутируемые каналы ТфОП). В системах с высоким качеством обслуживания используется архитектура с ЦК. Структура многозоновой ТСР с ЦК изображена на рисунке 4.2.



Основной элемент этой схемы - межзональный коммутатор. Он обрабатывает все ви­ды межзональных вызовов, т.е. весь межзональный трафик проходит через один коммутатор, соединенный с БС по выделенным линиям. Это обеспечивает быструю обработку вызовов, возможность подключения централизованных ДП. Информация о местонахождении абонен­
тов системы с ЦК хранится в единственном месте, поэтому ее легче защитить. Кроме того, межзональный коммутатор осуществляет также функции централизованного интерфейса к ТфОП и СКП, что позволяет при необходимости полностью контролировать как речевой трафик ТС, так и трафик всех приложений ПД, связанный с внешними СПД, например Ин­тернет. Таким образом, система с ЦК обладает более высокой управляемостью.