Файл: Воздействие железнодорожного транспорта на окружающую среду. Основные техногенные факторы воздействия.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 10.01.2024
Просмотров: 120
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
СОДЕРЖАНИЕ
1. Антропогенное воздействие на среду обитания.
2. Симбиоз, межвидовая взаимопомощь, комменсализм, аллелопатия.
4. Методы удаления газообразных загрязняющих веществ.
5. Загрязнение водных объектов канализационными стоками и последствия этого явления.
Способы переработки бытовых отходов
Способы уничтожения твердых бытовых отходов
Термическая переработка мусора
Высокотемпературный и низкотемпературный пиролиз
9. Санитарные нормы допустимого шума в помещениях и на территории жилой застройки.
Во избежание ненужного, а порой и непоправимого ущерба, наносимого природной среде, такое воздействие на среду должно тщательно планироваться. При этом следует сочетать удовлетворение потребностей человека за счет природы с активной защитой природной среды от последствий человеческой деятельности. Как правило, эти цели не исключают друг друга, хотя в некоторых случаях приходится принимать компромиссные решения.
2. Симбиоз, межвидовая взаимопомощь, комменсализм, аллелопатия.
В природе часто встречается сожительство двух или более видов, которое в ряде случаев становится необходимым для обоих партнёров. Такое сожительство называют симбиотическим взаимоотношением организмов (от сочетания сим - вместе, био - жизнь) или симбиозом.
Симбиоз - неразделимые взаимополезные связи двух видов, предполагающие обязательное тесное сожительство организмов, иногда даже с элементами паразитизма. Термин «симбиоз» является общим, им обозначают сожительство, обязательным условием которого является совместная жизнь, определённая степень сожительства организмов.
Гетеротипические реакции - это взаимоотношения между особями разных видов. Влияние, которое оказывают друг на друга два вида, живущих вместе, может быть нейтральным, благоприятным или неблагоприятным. Отсюда типы взаимоотношений могут быть следующими:
Нейтрализм - оба вида независимы и не оказывают друг на друга никакого влияния, животный мутуализм паразитизм хищничество
Конкуренция - каждый из видов оказывает на другой неблагоприятное действие.
Виды конкурируют в поисках пищи, укрытия, мест кладки яиц и т. п. Оба вида называют конкурирующими.
Мутуализм - симбиотические взаимоотношения, когда оба сожительствующих вида извлекают взаимную пользу.
Протокооперация (буквально: первичное сотрудничество) - простой тип симбиотических связей. При этой форме совместное существование выгодно для обоих видов, но не обязательно для них, т.е. не является непременным условием выживания видов (популяций).
Комменсализм (дословно - "питание вместе за одним столом") -взаимоотношения видов, при которых один из партнеров получает пользу, не нанося ущерб другому.
При комменсализме как полезно-нейтральных взаимосвязях выделяют:
Сотрапезничество - потребление разных веществ или частей одной и той же пищи.
Нахлебничество - потребление остатков пищи хозяина.
Квартиранство - использование одними видами других (их тел или их жилищ) в качестве убежища или жилища.
Амменсализм - тип межвидовых взаимоотношений, при котором в совместной среде обитания один вид подавляет существование другого вида, не испытывая противодействия.
Паразитизм - это форма взаимоотношений между видами, при которой организмы одного вида (паразита, потребителя) живут за счет питательных веществ или тканей организма другого вида (хозяина) в течение определённого времени. Хозяевами, как и паразитами, могут быть и животные, и растения.
Хищничество - такой тип взаимоотношений, при котором представители одного вида поедают (уничтожают) представителей другого, т. е. организмы одного вида служат пищей для другого.
Следует помнить, что типы взаимоотношений конкретной пары могут изменяться в зависимости от внешних условий или стадий жизни взаимодействующих организмов. К тому же в природе во взаимоотношения оказывается вовлечённой не пара, а гораздо большее число. Межвидовые отношения в природе бесконечно разнообразны.
3. Почему у водных организмов интенсивность дыхания меньше, чем у наземных? Общие закономерности для процесса дыхания и потребления кислорода.
Под интенсивностью дыхания понимается количество кислорода, потребляемое организмом в единицу времени (скорость дыхания) на единицу массы. Последняя рассчитывается на сырое или сухое вещество всего организма или его мягких тканей без учета массы наружного скелета. Большую сравнительную ценность имеют данные об интенсивности дыхания, выраженные отношением потребления кислорода к энергоемкости тела. Такое отношение — хорошая мера метаболической активности живого вещества у разных организмов. По величине газообмена (потребление кислорода) можно достаточно точно судить об энерготратах аэробных организмов.
С известной степенью условности различают обмен основной, стандартный, рутинный, активный и общий (средний). Под основным обменом понимается уровень энерготрат во время полного покоя голодных организмов в условиях абиотической среды, близких к оптимальным. Стандартный обмен, близкий по величине к основному, характеризует энерготраты организмов с выключенной двигательной активностью в некоторых строго определенных условиях среды, в частности температурных. Под рутинным обменом понимают скорость его протекания у животных в состоянии нормальной самопроизвольной активности. За величину активного обмена приняты энерготраты, связанные с обеспечением двигательной активности животных. Совокупность основного и активного обмена обозначают как общий, или средний, обмен. Под эффективностью газообмена понимается способность организмов с той или иной полнотой извлекать кислород из воды, омывающей дыхательные поверхности, степень ее дезоксигенизации в процессе дыхания. Интенсивность и эффективность газообмена у разных гидробионтов неодинаковы, зависят от их состояния и приспособительно меняются под влиянием условий среды.
Устойчивость гидробионтов к дефициту кислорода и заморные явления.
Только очень немногие гидробионты, относящиеся преимущественно к бактериям и простейшим, способны постоянно жить в бескислородной среде, т. е. относятся к группе анаэробов. Подавляющее большинство многоклеточных животных нуждается в кислороде, хотя некоторые из них могут переносить его отсутствие и осуществлять аноксибиоз.
Устойчивость гидробионтов к дефициту кислорода. Способность выживать в воде с низкими концентрациями кислорода зависит от видовой принадлежности организмов, их состояния и условий внешней среды. Минимальная, или пороговая, концентрация кислорода (Рт), переносимая гидробионтами, как правило, ниже для организмов, живущих в естественных местообитаниях в слабоаэрированной воде. Поэтому пелагические формы обычно менее толерантны к низким концентрациям кислорода, чем бентосные, а среди последних обитатели ила выносливее форм, населяющих песок, глину или камни. По сходным причинам речные формы требовательнее к кислород, чем озерные, а холодноводные оксифильнее обитателей сильно прогреваемых водоемов.
Например, у живущих в иле эвтрофных водоемов червей Tubifex tubifex, личинок комаров Chao- borus и Chironomus Рт выражается десятыми и сотыми долями миллиграмма в литре. Рачок Euphausia mucronata, спускающийся во время суточных миграций в глубинные слои с очень низким содержанием кислорода, хорошо переносит его концентрации, близкие к 0. Для рачков Mysis relicta, личинок комаров Lauterbornia и Та- nytarsus, многих лососевых рыб и ряда других форм, населяющих холодные чистые водоемы, Рт равна 3,5—4 мг/л. Рт довольно сильно изменяется с возрастом животных, обычно понижаясь у взрослых особей. Например, для рачков Metamysis kowatewskyi длиной 2—4 мм она равна 1,92 мг/л, а с увеличением размера животных до 5—9 и более 9 мм снижается соответственно до 1,7 и 1,51 мг/л. Для рачков Artemia salina концентрация кислорода, вызывающая первые признаки угнетения жизни у науплиальных стадий, средневозрастных и взрослых рачков, равна соответственно 0,50; 0,34 и 30 мг/л (Воскресенский, Хайдаров, 1968).
Чувствительность к дефициту кислорода может обостряться на отдельных стадиях развития. Так, для молоди лосося в первые 40 дней после выклева пороговое количество кислорода равно мг/л, к 50-му дню оно повышается до 3, а к 107-му дню падает до 1,3 мг/л. Как правило, устойчивость к недостатку кислорода у животных различных систематических групп тем выше, чем они менее подвижны.
Из внешних факторов на величину Рт в наибольшей степени влияет температура. С ее повышением обмен организмов возрастает, их потребность в кислороде увеличивается и для ее удовлетворения нужны более благоприятные респираторные условия. Например, Рт у карася и тиляпии с повышением температуры от 30 до 35°С возрастает в І1,5—2 раза (Mohamed, Kutty, 1982). Обычно наблюдается довольно тесная корреляция между величинами Рт и Рso. Для рыб эта связь, согласно Л. Б. Кляшторину (1982), хорошо аппроксимируется уравнением: Ръа—7,4 + 0,74 Рт, где Рso и Рт выражены в гПа.
При временной аноксии у многих гидробионтов аэробный обмен идет за счет мобилизации запасов кислорода из каротиноидов, гем- содержащих пигментов и других депо. Обычно этих запасов хватает не больше, чем на несколько десятков минут. Дальнейшее добывание энергии обеспечивается за счет анаэробного гликолиза и другими способами. Длительность нахождения и выживаемость гидробионтов при аноксии зависит от их видовой принадлежности, физиологического состояния и внешних условий. Формы, у которых лактат, образующийся при гликолизе, не накапливается, способны жить в отсутствие кислорода значительно дольше тех, что накапливают молочную кислоту. Вторые после перехода в аэробные условия обнаруживают «экстрадыхание» — повышение потребления кислорода, связанное с окислением накопившихся недоокисленных соединений. У первых форм «экстрадыхания» не наблюдается, «кислородной задолженности» не возникает, и они при небольших энергетических тратах могут жить без кислорода несколько месяцев. Например, сеголетки карася при температуре 3—8°С жили анаэробно более двух месяцев. Подобная картина отмечена для карпа (в зимних условиях) и некоторых других рыб. В отсутствие кислорода серебряный карась при низкой температуре может выделять СОг в количестве до Уз той величины, которая наблюдается в аэробных условиях. Образующийся лактат превращается в этанол, который через жабры выводится из организма в воду (Jiirs, 1982).
Животные, накапливающие при аноксибиозе недоокисленные продукты, менее устойчивы к длительному отсутствию кислорода. Черепахи, ныряя, могут жить за счет гликолиза несколько часов или дней, и, всплывая, компенсируют «кислородную задолженность». Личинки хирономид хотя и накапливают лактат, но, полностью теряя подвижность и находясь в состоянии пассивного анаэробиоза, выдерживают недели и месяцы аноксии. Устрицы и другие моллюски, замыкающие раковины во время отлива, безболезненно выдерживают аноксию в течение нескольких часов, накапливая продукты гликолиза. За счет гликолиза пластинчатожаберные моллюски получают до 30% расходуемой энергии. Замыкая створки, например, при действии ядов, они полностью переходят на анаэробный обмен. Обитающие в норках рачки Urogebia и Callianassa способны выживать в отсутствие кислорода несколько суток за счет гликогена и аспартата (Zebe, 1982). Больше суток живут без кислорода моллюски Mytilus edulis, используя гликоген и глутамат.