Файл: Воздействие железнодорожного транспорта на окружающую среду. Основные техногенные факторы воздействия.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 10.01.2024

Просмотров: 120

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Во избежание ненужного, а порой и непоправимого ущерба, наносимого природной среде, такое воздействие на среду должно тщательно планироваться. При этом следует сочетать удовлетворение потребностей человека за счет природы с активной защитой природной среды от последствий человеческой деятельности. Как правило, эти цели не исключают друг друга, хотя в некоторых случаях приходится принимать компромиссные решения.


2. Симбиоз, межвидовая взаимопомощь, комменсализм, аллелопатия.


В природе часто встречается сожительство двух или более видов, которое в ряде случаев становится необходимым для обоих партнёров. Такое сожительство называют симбиотическим взаимоотношением организмов (от сочетания сим - вместе, био - жизнь) или симбиозом.

Симбиоз - неразделимые взаимополезные связи двух видов, предполагающие обязательное тесное сожительство организмов, иногда даже с элементами паразитизма. Термин «симбиоз» является общим, им обозначают сожительство, обязательным условием которого является совместная жизнь, определённая степень сожительства организмов.

Гетеротипические реакции - это взаимоотношения между особями разных видов. Влияние, которое оказывают друг на друга два вида, живущих вместе, может быть нейтральным, благоприятным или неблагоприятным. Отсюда типы взаимоотношений могут быть следующими:

Нейтрализм - оба вида независимы и не оказывают друг на друга никакого влияния, животный мутуализм паразитизм хищничество

Конкуренция - каждый из видов оказывает на другой неблагоприятное действие.

Виды конкурируют в поисках пищи, укрытия, мест кладки яиц и т. п. Оба вида называют конкурирующими.

Мутуализм - симбиотические взаимоотношения, когда оба сожительствующих вида извлекают взаимную пользу.

Протокооперация (буквально: первичное сотрудничество) - простой тип симбиотических связей. При этой форме совместное существование выгодно для обоих видов, но не обязательно для них, т.е. не является непременным условием выживания видов (популяций).

Комменсализм (дословно - "питание вместе за одним столом") -взаимоотношения видов, при которых один из партнеров получает пользу, не нанося ущерб другому.

При комменсализме как полезно-нейтральных взаимосвязях выделяют:

Сотрапезничество - потребление разных веществ или частей одной и той же пищи.

Нахлебничество - потребление остатков пищи хозяина.

Квартиранство - использование одними видами других (их тел или их жилищ) в качестве убежища или жилища.

Амменсализм - тип межвидовых взаимоотношений, при котором в совместной среде обитания один вид подавляет существование другого вида, не испытывая противодействия.



Паразитизм - это форма взаимоотношений между видами, при которой организмы одного вида (паразита, потребителя) живут за счет питательных веществ или тканей организма другого вида (хозяина) в течение определённого времени. Хозяевами, как и паразитами, могут быть и животные, и растения.

Хищничество - такой тип взаимоотношений, при котором представители одного вида поедают (уничтожают) представителей другого, т. е. организмы одного вида служат пищей для другого.

Следует помнить, что типы взаимоотношений конкретной пары могут изменяться в зависимости от внешних условий или стадий жизни взаимодействующих организмов. К тому же в природе во взаимоотношения оказывается вовлечённой не пара, а гораздо большее число. Межвидовые отношения в природе бесконечно разнообразны.

3. Почему у водных организмов интенсивность дыхания меньше, чем у наземных? Общие закономерности для процесса дыхания и потребления кислорода.


Под интенсивностью дыхания понимается количество кислоро­да, потребляемое организмом в единицу времени (скорость дыха­ния) на единицу массы. Последняя рассчитывается на сырое или сухое вещество всего организма или его мягких тканей без учета массы наружного скелета. Большую сравнительную ценность имеют данные об интенсивности дыхания, выраженные отношением по­требления кислорода к энергоемкости тела. Такое отношение — хорошая мера метаболической активности живого вещества у раз­ных организмов. По величине газообмена (потребление кислорода) можно достаточно точно судить об энерготратах аэробных организ­мов.

С известной степенью условности различают обмен основной, стандартный, рутинный, активный и общий (средний). Под основ­ным обменом понимается уровень энерготрат во время полного по­коя голодных организмов в условиях абиотической среды, близких к оптимальным. Стандартный обмен, близкий по величине к основ­ному, характеризует энерготраты организмов с выключенной дви­гательной активностью в некоторых строго определенных условиях среды, в частности температурных. Под рутинным обменом понима­ют скорость его протекания у животных в состоянии нормальной самопроизвольной активности. За величину активного обмена при­няты энерготраты, связанные с обеспечением двигательной актив­ности животных. Совокупность основного и активного обмена обо­значают как общий, или средний, обмен. Под эффективностью газообмена понимается способность организмов с той или иной полнотой извлекать кислород из воды, омывающей дыхательные по­верхности, степень ее дезоксигенизации в процессе дыхания. Интен­сивность и эффективность газообмена у разных гидробионтов неоди­наковы, зависят от их состояния и приспособительно меняются под влиянием условий среды.


Устойчивость гидробионтов к дефициту кислорода и заморные явления.

Только очень немногие гидробионты, относящиеся преимущест­венно к бактериям и простейшим, способны постоянно жить в бес­кислородной среде, т. е. относятся к группе анаэробов. Подавляю­щее большинство многоклеточных животных нуждается в кислоро­де, хотя некоторые из них могут переносить его отсутствие и осу­ществлять аноксибиоз.

Устойчивость гидробионтов к дефициту кислорода. Способность выживать в воде с низкими концентрациями кислорода зависит от видовой принадлежности организмов, их состояния и условий внеш­ней среды. Минимальная, или пороговая, концентрация кислорода (Рт), переносимая гидробионтами, как правило, ниже для организ­мов, живущих в естественных местообитаниях в слабоаэрированной воде. Поэтому пелагические формы обычно менее толерантны к низким концентрациям кислорода, чем бентосные, а среди послед­них обитатели ила выносливее форм, населяющих песок, глину или камни. По сходным причинам речные формы требовательнее к кис­лород, чем озерные, а холодноводные оксифильнее обитателей сильно прогреваемых водоемов.

Например, у живущих в иле эв­трофных водоемов червей Tubifex tubifex, личинок комаров Chao- borus и Chironomus Рт выражается десятыми и сотыми долями миллиграмма в литре. Рачок Euphausia mucronata, спускающийся во время суточных миграций в глубинные слои с очень низким со­держанием кислорода, хорошо переносит его концентрации, близкие к 0. Для рачков Mysis relicta, личинок комаров Lauterbornia и Та- nytarsus, многих лососевых рыб и ряда других форм, населяющих холодные чистые водоемы, Рт равна 3,5—4 мг/л. Рт довольно силь­но изменяется с возрастом животных, обычно понижаясь у взрос­лых особей. Например, для рачков Metamysis kowatewskyi длиной 2—4 мм она равна 1,92 мг/л, а с увеличением размера животных до 5—9 и более 9 мм снижается соответственно до 1,7 и 1,51 мг/л. Для рачков Artemia salina концентрация кислорода, вызывающая пер­вые признаки угнетения жизни у науплиальных стадий, средневоз­растных и взрослых рачков, равна соответственно 0,50; 0,34 и 30 мг/л (Воскресенский, Хайдаров, 1968).

Чувствительность к дефициту кислорода может обостряться на отдельных стадиях развития. Так, для молоди лосося в первые 40 дней после выклева пороговое количество кислорода равно мг/л, к 50-му дню оно повышается до 3, а к 107-му дню падает до 1,3 мг/л. Как правило, устойчивость к недостатку кислорода у животных различных систематических групп тем выше, чем они менее подвижны.


Из внешних факторов на величину Рт в наибольшей степени влияет температура. С ее повышением обмен организмов возраста­ет, их потребность в кислороде увеличивается и для ее удовлетворе­ния нужны более благоприятные респираторные условия. Напри­мер, Рт у карася и тиляпии с повышением температуры от 30 до 35°С возрастает в І1,5—2 раза (Mohamed, Kutty, 1982). Обычно на­блюдается довольно тесная корреляция между величинами Рт и Рso. Для рыб эта связь, согласно Л. Б. Кляшторину (1982), хорошо аппроксимируется уравнением: Ръа—7,4 + 0,74 Рт, где Рso и Рт вы­ражены в гПа.

При временной аноксии у многих гидробионтов аэробный обмен идет за счет мобилизации запасов кислорода из каротиноидов, гем- содержащих пигментов и других депо. Обычно этих запасов хватает не больше, чем на несколько десятков минут. Дальнейшее добыва­ние энергии обеспечивается за счет анаэробного гликолиза и дру­гими способами. Длительность нахождения и выживаемость гидро­бионтов при аноксии зависит от их видовой принадлежности, фи­зиологического состояния и внешних условий. Формы, у которых лактат, образующийся при гликолизе, не накапливается, способны жить в отсутствие кислорода значительно дольше тех, что накапли­вают молочную кислоту. Вторые после перехода в аэробные усло­вия обнаруживают «экстрадыхание» — повышение потребления кис­лорода, связанное с окислением накопившихся недоокисленных со­единений. У первых форм «экстрадыхания» не наблюдается, «кис­лородной задолженности» не возникает, и они при небольших энер­гетических тратах могут жить без кислорода несколько месяцев. Например, сеголетки карася при температуре 3—8°С жили анаэроб­но более двух месяцев. Подобная картина отмечена для карпа (в зимних условиях) и некоторых других рыб. В отсутствие кислорода серебряный карась при низкой температуре может выделять СОг в количестве до Уз той величины, которая наблюдается в аэробных условиях. Образующийся лактат превращается в этанол, который через жабры выводится из организма в воду (Jiirs, 1982).

Животные, накапливающие при аноксибиозе недоокисленные продукты, менее устойчивы к длительному отсутствию кислорода. Черепахи, ныряя, могут жить за счет гликолиза несколько часов или дней, и, всплывая, компенсируют «кислородную задолженность». Личинки хирономид хотя и накапливают лактат, но, полностью те­ряя подвижность и находясь в состоянии пассивного анаэробиоза, выдерживают недели и месяцы аноксии. Устрицы и другие моллю­ски, замыкающие раковины во время отлива, безболезненно выдер­живают аноксию в течение нескольких часов, накапливая продук­ты гликолиза. За счет гликолиза пластинчатожаберные моллюски получают до 30% расходуемой энергии. Замыкая створки, напри­мер, при действии ядов, они полностью переходят на анаэробный обмен. Обитающие в норках рачки Urogebia и Callianassa спо­собны выживать в отсутствие кислорода несколько суток за счет гликогена и аспартата (Zebe, 1982). Больше суток живут без кис­лорода моллюски Mytilus edulis, используя гликоген и глутамат.