Файл: Сборник контрольных заданий для студентов специалистов.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 03.02.2024

Просмотров: 489

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Вариант 1

Вариант 4

Вариант 5

Вариант 6

Вариант 2

Вариант 6

Вариант 7

Вариант 8

Вариант 1

Вариант 2

Вариант 3

Вариант 4

Вариант 5

Вариант 6

Вариант 7

Вариант 8

Вариант 9

Вариант 10

2.2. ОСНОВНЫЕ ФОРМУЛЫ И ЗАКОНЫ ЭЛЕКТРОМАГНЕТИЗМА

Контрольное задание №4

Вариант 1

Вариант 9 По двум бесконечно длинным прямым параллельным проводам в противоположные стороны идут токи силой 10 А. Расстояние между проводами равно 5 см. Определить магнитную индукцию в точке, удаленной на 2 см от одного и на 3 см от другого провода. Найти величину магнитного потока между полюсами электромагнита, если площадь каждого полюса 10-2м2, а плоские поверхности их параллельны друг другу. Напряженность поля 36104А/м. Поле однородно. Прямой проводник длиной 20 см, по которому идет ток силой 10 А, помещен в магнитное поле под углом 30 к его направлению. Индукция магнитного поля равна 5 Тл. Найти напряженность поля и силу, действующую на проводник. В однородном магнитном поле, индукция которого 1,5 Тл, равномерно движется прямой проводник длиной 25 см. Сила тока в проводнике 2,5 А. Скорость движения проводника 20 см/с, направлена перпендикулярно вектору индукции. Найти работу, затрачиваемую на перемещение проводника в течение 5 с. Виток диаметром 8 см находится в однородном магнитном поле с напряженностью 6103 А/м. Плоскость витка перпендикулярна линиям индукции поля. Какую работу надо совершить, чтобы повернуть виток относительно его диаметра на угол 45o при силе тока в 4 А? Электрон движется в однородном магнитном поле с индукцией 10 мТл по винтовой линии, радиус которой 1,5 см, а шаг 10 см. Определить период обращения электрона и его скорость. Соленоид сечением 5 см2 содержит 1200 витков. Индукция магнитного поля внутри соленоида при силе тока 2 А равна 0,01 Тл. Определить индуктивность соленоида. Напряженность магнитного поля соленоида 1,6103 А/м; длина соленоида 100 см; площадь сечения 5 см2. Соленоид не имеет сердечника. Определить энергию и плотность энергии поля. Какое сечение должен иметь соленоид длиной 30 см с железным сердечником, чтобы при силе тока 0,3 А энергия магнитного поля в нем была равна 0,4 Дж, если в обмотке соленоида – 3500 витков (воспользоваться графиком В=f (Н), см. прил. 2)? Соленоид содержит 800 витков. Площадь сечения сердечника 10 см2. По обмотке идет ток, создающий поле с индукцией 8 мТл. Определить среднее значение ЭДС самоиндукции, которая возникает на зажимах соленоида, если сила тока уменьшится до нуля за время 0,8 мс. Рамка, содержащая 200 витков, может вращаться относительно оси, лежащей в её плоскости. Площадь рамки 5 см2. Ось рамки перпендикулярна линиям индукции однородного магнитного поля, величина которого равна 0,05 Тл. Определить максимальную ЭДС, которая индуцируется в рамке при ее вращении с частотой 40 с-1. Вычислить циркуляцию вектора индукции вдоль контура, охватывающего токи силой 10 А и 15 А, идущие в одном направлении, и ток силой 20 А, направленный в противоположную сторону. Вариант 10 По проводнику, согнутому в виде прямоугольника с длиной сторон 8 и 12 см, идет ток силой 5 А. Определить индукцию магнитного поля в точке пересечения диагоналей прямоугольника. В однородном магнитном поле, индукция которого равна 2 Тл, а направление горизонтальное, вертикально вверх движется прямой проводник массой 2 кг, по которому идет ток силой 4 А. Через 3 с после начала движения проводник имеет скорость 10 м/с. Определить его длину. Магнитный поток сквозь сечение соленоида равен 50 мкВб. Длина соленоида 50 см. Найти магнитный момент соленоида, если его витки плотно прилегают друг к другу. Виток, по которому течет ток силой 20 А, свободно установился в однородном магнитном поле с индукцией 0,016 Тл. Диаметр витка равен 10 см. определить работу, которую нужно совершить, чтобы повернут виток на угол /2 относительно оси, совпадающей с диаметром. Заряженная частица с энергией 103 эВ движется в однородном магнитном поле по окружности радиусом 1 мм. Определить силу, действующую на частицу со стороны поля. По соленоиду идет ток силой 2 А. Магнитный поток, пронизывающий поперечное сечение соленоида, равен 410-6 Вб. Определить индуктивность соленоида, если он имеет 800 витков. Индуктивность соленоида с немагнитным сердечником равна 0,16 мГн. Длина соленоида 1 м, площадь сечения 1 см2. Сколько витков на каждый сантиметр длины содержит обмотка соленоида? Определить индуктивность соленоида с железным сердечником и энергию магнитного поля в нем при силе тока 0,6 А, если площадь сечения соленоида 10 см2, число витков 103, а его длина 20 см, (воспользоваться графиком В=f(Н), см. прил. 2). Ток в соленоиде изменяется по закону I=Аt–Вt2, где А=10 А/с; В=1 А/с2. Определить ЭДС самоиндукции в соленоиде через 2 с. Длина соленоида 50 см, площадь сечения – 2 см2. Диаметр провода однослойной обмотки – 2 мм. Квадратная рамка с длиной стороны 15 см, содержащая 150 витков, вращается в однородном магнитном поле вокруг оси, перпендикулярной полю. Определить индукцию магнитного поля, если рамка делает 10 оборотов в секунду, а максимальная ЭДС индукции в рамке равна 10 В. Обмотка тороида с немагнитным сердечником содержит 10 витков на каждый сантиметр длины. Определить силу тока, если плотность энергии магнитного поля равна 0,8 Дж/м3. Вычислить циркуляцию вектора индукции вдоль контура, охватывающего токи силой 10 А; 14 А; 20 А, идущие в одном направлении, и ток силой 44 А, направленный в противоположную сторону. ЧАСТЬ 3. ОПТИКА. АТОМНАЯ И ЯДЕРНАЯ ФИЗИКАЗадачи, приведенные в контрольных работах, соответствуют программе общего курса физики в техническом вузе и охватывают разделы «Волновая оптика», «Тепловое излучение», «Атомная физика» и «Ядерная физика».В работе отсутствуют сведения, которые при необходимости могут быть найдены в учебных пособиях по курсу общей физики (см. библиографический список). Поэтому вначале помещен краткий перечень формул и законов, необходимых для решения задач.В приложении приведены основные справочные данные, дополняющие условия задач. Номера вариантов, которые должен выполнить студент, указывает преподаватель.3.1. ОСНОВНЫЕ ФОРМУЛЫ И ЗАКОНЫ ОПТИКИ3.1.1. Волновая оптикаАбсолютный показатель преломления среды: ,где и - скорости электромагнитных волн (света) в вакууме и среде. Закон преломления света на границе раздела двух сред с абсолютными показателями преломления и : ,где - угол падения, - угол преломления луча света; - относительный показатель преломления двух сред.Полное отражение наблюдается при падении света из среды оптически более плотной ( ) в среду оптически менее плотную ( ), т.е. при > . В этом случае угол преломления и :и ,где - предельный угол полного отражения света; при угле падения > свет полностью отражается от границы раздела сред. Формула тонкой собирающей линзы: ,где - фокусное расстояние линзы; - расстояние от предмета до оптического центра линзы; - расстояние от оптического центра линзы до изображения предмета. Для тонкой рассеивающей линзы расстояния и считаются отрицательными. Оптическая сила линзы: . Оптическая длина пути световой волны: ,где - геометрический путь световой волны; - абсолютный показатель преломления среды.Оптическая разность хода двух когерентных световых волн: ,где и - оптические пути световых волн в первой и во второй средах. Разность фаз колебаний векторов напряженностей электрического поля (световых векторов) двух когерентных световых волн: ,где - длина этих волн в вакууме. Условия максимумов интенсивности света при интерференции:и , где Условия минимумов интенсивности света при интерференции: и , где Координаты максимумов и минимумов интенсивностей света в интерференционной картине, полученной от двух когерентных источников: и ,где - расстояние от источников света до экрана; - расстояние между источниками света; Ширина интерференционной полосы: . Оптическая разность хода двух световых волн, отраженных от верхней и нижней поверхностей плоскопараллельной тонкой пленки, находящейся в воздухе с абсолютным показателем преломления :,где - толщина пленки; - абсолютный показатель преломления пленки; - длина световых волн в воздухе (вакууме); и - углы, соответственно, падения и преломления света. Второе слагаемое в этих формулах учитывает увеличение оптической длины пути световой волны на при отражении ее от среды оптически более плотной ( > ). Радиусы светлых колец Ньютона в отраженном свете (темных колец в проходящем свете):при и радиусы темных колец Ньютона в отраженном свете (светлых колец в проходящем свете):при где - радиус кривизны линзы; - длина световой волны в воздухе (вакууме), находящемся между линзой и стеклянной пластинкой. Радиусы зон Френеля, построенных на сферической волновой поверхности:при , где - радиус сферической волновой поверхности точечного источника света; - расстояние от волновой поверхности до точки наблюдения; - длина световой волны в данной среде.Дифракция Фраунгофера на одной щели: а) условие максимумов интенсивности света ; б) условие минимумов интенсивности света ,где - ширина щели; - угол дифракции, определяющий направление максимума или минимума интенсивности света; - длина световой волны в данной среде; При падении параллельного пучка света на щель под углом условие дифракционных максимумов имеет вид: .Дифракция Фраунгофера на дифракционной решетке:а) условие главных минимумов интенсивности света при ;б) условие дополнительных минимумов интенсивности света при ( );в) условие главных максимумов интенсивности света при ,где - ширина одной щели; - постоянная решетки; - общее число щелей; - угол дифракции, определяющий направление максимума или минимума интенсивности света; - длина световой волны в данной среде; - порядок спектра.При падении параллельного пучка света на дифракционную решетку под углом условие главных максимумов имеет вид: .Разрешающая способность дифракционной решетки: ,где и - длины двух световых волн, еще разрешаемых решеткой по критерию Рэлея; - общее число щелей; - порядок спектра.При дифракции рентгеновских лучей на кристаллической решетке направления максимальных интенсивностей этих лучей определяются по формуле Вульфа-Брэггов: при ,где - расстояние между параллельными кристаллографическими плоскостями; - длина волн рентгеновских лучей; - угол скольжения рентгеновских лучей. 3.1.2. Поляризация светаИнтенсивность света численно равна энергии, переносимой электро-магнитными волнами за единицу времени через единичную площадку, перпендикулярную направлению распространения этих волн. Интенсивность электромагнитной волны пропорциональна квадрату амплитуды вектора напряженности электрического поля (амплитуды светового вектора): .Интенсивность света, являющегося совокупностью электромагнитных волн: ,где и - интенсивность и амплитуда вектора напряженности электрического поля - той электромагнитной волны; и - проекции вектора напряженности электрического поля - той электромагнитной волны на взаимно перпендикулярные оси координат и ; - количество электромагнитных волн. В естественном свете:





Вариант 4


  1. Кинематические уравнения движения двух материальных точек имеют вид x1 = A1t +  B1t2  + C1t3 и x2 = A2t + В2t2 + С2t3, где В= 4 м/с2, C1 = —3 м/с3, В2 = —2 м/с2, С= 1 м/с3. Определить момент времени, для которого ускорения этих точек будут равны.

  2. Снаряд, выпущенный из орудия под углом 300 к горизонту, дважды был на одной и той же высоте h: спустя 10 с и 50 с после выстрела. Определить начальную скорость и высоту h.

  3. Диск радиусом r = 20 см вращается согласно уравнению  = A +Bt+Ct3 , где A=3 рад; B= – 1 рад/с; C=0,1 рад/с3. Определить тангенциальное, нормальное и полное ускорения точек на окружности диска для момента времени, равного 10 с.

  4. Вентилятор вращается со скоростью соответствующей частоте 600 об/мин. После выключения вентилятор остановился через 0,5 мин. Сколько оборотов сделал вентилятор до полной остановки.

  5. Через вращающийся вокруг горизонтальной оси блок перекинута невесомая нерастяжимая нить, к концам которой привязаны грузы массой 0,5 кг и 0,6 кг. Найти силу давления блока на ось при движении грузов. Массой блока и трением в оси можно пренебречь.

  6. Летчик давит на сиденье кресла самолета в нижней точке петли Нестерова с силой в 7200 Н. Масса летчика 80 кг, радиус петли 250 м. Определить скорость самолета.

  7. Тело, брошенное с высоты 5 м вертикально вниз со скоростью 20 м/с, погрузилось в грунт на глубину 20 см. Найти работу силы сопротивления грунта, если масса тела равна 2 кг. Сопротивлением воздуха пренебречь.

  8. Снаряд, летевший горизонтально со скоростью 100 м/с, разрывается на две равные части на высоте 40 м. Одна часть падает через 1 с на землю точно под местом взрыва. Определить величину и направление скорости движения второй части снаряда сразу после взрыва.

  9. Маховое колесо, имеющее момент инерции 245 кгм2, вращается, делая 20 оборотов в секунду. Через 1 мин после того как на колесо перестал действовать вращающий момент, оно остановилось. Найти: а) момент сил трения; б) число оборотов, которое сделало колесо до полной остановки (после прекращения действия сил).

  10. На сплошной цилиндрический вал радиусом 0,5 м намотан шнур, к концу которого привязан груз массой 10 кг. Найти момент инерции вала и его массу, если груз при разматывании шнура, опускается с ускорением 2 м/с2.

  11. К ободу покоящегося диска массой 5 кг приложена постоянная касательная сила в 20 Н. Какую кинетическую энергию будет иметь диск через 5 с после начала действия силы? Диск может свободно вращаться относительно оси, проходящей через центр диска и перпендикулярной его плоскости.

  12. Платформа в виде диска вращается по инерции вокруг вертикальной оси с частотой 15 об/мин. На краю платформы стоит человек. Когда человек перешел в центр платформы, частота возросла до 25 об/мин. Масса человека 70 кг. Определить массу платформы. Момент инерции человека рассчитывать как для материальной точки.

  13. Материальная точка массой 0,05 кг совершает гармонические колебания, уравнение которых имеет вид х=0,1sin5t. Найти силу, действующую на точку: а) в момент, когда фаза колебаний =300; б) при наибольшем отклонении точки.

  14. Определить период колебаний груза массой 2,5 кг, подвешенного к пружине, если пружина под действием силы в 30 Н растягивается на 9 см.

  15. Точка одновременно участвует в двух гармонических колебаниях, происходящих во взаимно перпендикулярных направлениях и описываемых уравнениями x=3cosωt и x=4cosωt. Определить уравнение траектории точки.




Вариант 5


  1. Точка движется по прямой согласно уравнению S=6t+1/8t 3 (длина в метрах, время в секундах). Определить среднюю скорость и ускорение точки за интервал времени от 2 с до 6 с.

  2. С башни высотой 30 м в горизонтальном направлении брошено тело с начальной скоростью 10 м/с. Определить: 1) скорость тела в момент падения на Землю; 2) угол, который образует эта скорость с горизонтом в точке его падения.

  3. Тело вращается вокруг неподвижной оси по закону =A+Bt+Ct2, где A = 10 рад; В = 20 рад/c; С = 2 рад/с2. Найти полное ускорение точки, находящейся на расстоянии 0,1 м от оси вращения, для момента времени, равного 4 с.

  4. Колесо автомашины вращается равноускоренно. Сделав N = 50 полных оборотов, оно изменило частоту вращения от n1 = 4 с1 до n2 = 6 c1. Определить угловое ускорение  колеса.

  5. В вагоне, движущемся горизонтально с ускорением 2 м/с2, на шнуре висит груз массой 200 г. Найти силу натяжения шнура и угол его отклонения от вертикального положения.

  6. Найти работу подъема груза по наклонной плоскости, если масса груза 100 кг, длина наклонной плоскости 2 м, угол наклона 300, коэффициент трения 0,1, а груз движется с ускорением 1 м/с2.

  7. Тело массой 10 кг брошено с высоты 100 м вертикально вниз со скоростью 14 м/с. Определить среднюю силу сопротивления грунта, если тело углубилось в него на 0,2 м. Сопротивление воздуха не учитывать.

  8. Два конькобежца массами 80 и 50 кг, держась за концы натянутогодлинного шнура, неподвижно стоят на льду один против другого. Один из них начинает укорачивать шнур, выбирая его со скоростью 1 м/с. С какими скоростями будут двигаться по льду конькобежцы? Трением пренебречь.

  9. Маховик, момент инерции которого равен J = 50 кг·м2, вращается по закону:  = A + Bt + Ct2, где А = 2 рад; В = 16 рад/с; С = 2 рад/с2. Найти закон изменения вращающего момента и закон изменения мощности. Какова мощность в момент времени t = 3с.

  10. Через неподвижный блок перекинута нить, к концам которой привязаны грузы массой 100 г и 110 г. С каким ускорением они будут двигаться, если масса блока равна 400 г? Трением в блоке пренебречь.

  11. Платформа в виде диска радиусом 1 м и массой 200 кг вращается вокруг вертикальной оси, делая 1 оборот в минуту. На краю нее стоит человек массой 50 кг. Сколько оборотов в секунду будет делать платформа, если человек перейдет на полметра ближе к центру. Считать платформу однородным диском, а человека – точечной массой.

  12. К катящемуся шару массой 1 кг приложили силу в 1 Н, под действием которой шар остановился, пройдя путь 1 м. Определить скорость, с которой двигался шар до начала торможения.

  13. Скорость материальной точки, совершающей гармонические колебания, задается уравнением V(t)=–6sin2πt. Записать зависимость смещения этой точки от времени.

  14. К пружине подвешен груз. Максимальная кинетическая энергия колебаний груза 1 Дж. Амплитуда колебаний равна 5 см. Найти жесткость пружины.

  15. Точка совершает одновременно два гармонических колебания, происходящих вдоль оси x и описываемых уравнениями x1 = 3 cos (ωt + π/4) см и x2 = cos (ωt - π) см. Записать уравнение результирующего колебания и представить векторную диаграмму сложения амплитуд. Найти максимальную скорость колебания, построить графики колебаний x1 и x2 и скорости результирующего колебания.




Вариант 6


  1. Уравнения прямолинейного движения точек заданы в виде S1 = 4t2 + t и S2 = 5t3 + t2 (расстояние – в метрах, время – в секундах). В какой момент времени скорости точек будут равны? Определить ускорение в этот момент времени.

  2. Тело брошено со скоростью 10 м/с под углом 450 к горизонту. Найти радиусы кривизны траектории тела спустя 0,5 с после начала движения и в точке наивысшего подъема тела над поверхностью земли.

  3. Колесо радиусом R=0,2м вращается так, что зависимость угла поворота радиуса колеса от времени дается уравнением=А+Вtt3, где В=4 рад/с и С=2 рад/с3. Для точек лежащих на ободе колеса, найти через время t=3 с после начала движения: а) угловую скорость, б) линейную скорость, в) угловое ускорение.

  4. Автомобиль начал двигаться равноускоренно по закругленному участку дороги и, пройдя 100 м, развил скорость 36 км/ч. Радиус закругления 300 м. Определить тангенциальное и нор­мальное ускорения автомобиля в конце 10 секунды после начала движения.

  5. Брусок массой 400 г, лежащий на столе, соединен с бруском (свисает с края стола) массой 100 г через нить, которая перекинута через блок, находящийся на краю стола. Брусок наибольшей массы проходит из состояния покоя путь 80 см за 2 с. Найти коэффициент трения бруска о поверхность стола.

  6. Определить работу, совершаемую при подъеме груза массой 50 кг по наклонной плоскости с углом наклона 300 к горизонту на высоту 4 м, если время подъема – 2 с, а коэффициент трения равен 0,06.

  7. Автомашина массой 1,8 т движется в гору, уклон которой составляет 3 м на каждые 100 м пути. Определить: 1) работу, совершаемую двигателем автомашины на пути 5 км, если коэффициент трения равен 0,1; 2) развиваемую двигателем мощность, если известно, что этот путь был преодолен за 5 мин.

  8. Из пушки, стоящей на гладкой горизонтальной площадке, стреляют под углом 300 к горизонту. Масса снаряда 20 кг, его начальная скорость 200 м/с. Какую скорость приобретет пушка при выстреле, если ее масса 500 кг?

  9. Брошенное вертикально вверх тело массой 200 г упало на землю спустя 1,44 с. Найти кинетическую энергию тела в момент падения на землю и потенциальную энергию в верхней точке траектории.

  10. Диск массой 0,6 кг и диаметром 40 см вращается с угловой скоростью 157 рад/с. При торможении он останавливается в течение 10 с. Найти среднюю величину тормозящего момента.

  11. Обруч и диск имеют одинаковую массу и катятся без проскальзывания с одинаковой скоростью. Кинетическая энергия обруча равна 40 Дж. Найти кинетическую энергию диска.

  12. На краю горизонтально вращающейся платформы радиусом 1 м лежит груз. В какой момент времени после начала вращения платформы груз соскользнет с нее, если ее вращение – равноускоренное, а в момент времени, равный 2 мин, она имеет угловую скорость 1,4 рад/с? Коэффициент трения между грузом и платформой равен 0,05.

  13. Период гармонических колебаний составляет 4 с. Определить время t1, за которое тело, совершающее эти колебания, пройдет путь, равный половине амплитуды, если в начальный момент времени тело проходило положение равновесия; s2 – путь, равный амплитуде; s3 – путь, равный амплитуды.

  14. Сплошной медный диск массой 1 кг и толщиной 1 см колеблется вокруг горизонтальной оси, проходящей через середину одного из радиусов перпендикулярно плоскости диска. Определить период колебания такого физического маятника.

  15. Методом векторных диаграмм сложить два гармонических колебания одного направления, описываемых уравнениями колебаний x1 = cos (ωt + π/4) см и x2=4cos(ωt– π) см. Записать уравнение результирующего колебания и построить графики x1, x2 и результирующего колебания.