Файл: Пеноуз Роджер. Тени разума. В поисках науки о сознании.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 29.06.2024
Просмотров: 704
Скачиваний: 0
СОДЕРЖАНИЕ
1.2. Спасут ли роботы этот безумный мир?
1.3. Вычисление и сознательное мышление
1.5. Вычисление: нисходящие и восходящие процедуры
1.6. Противоречит ли точка зрения в тезису Черча—Тьюринга?
1.9. Невычислительные процессы
1.11. Обладают ли компьютеры правами и несут ли ответственность?
1.12. «Осознание», «понимание», «сознание», «интеллект»
1.13. Доказательство Джона Серла
1.14. Некоторые проблемы вычислительной модели
1.15. Свидетельствуют ли ограниченные возможности сегодняшнего ии в пользу ?
1.16. Доказательство на основании теоремы Гёделя
1.17. Платонизм или мистицизм?
1.18. Почему именно математическое понимание?
1.19. Какое отношение имеет теорема Гёделя к «бытовым» действиям?
1.20. Мысленная визуализация и виртуальная реальность
1.21. Является ли невычислимым математическое воображение?
2.1. Теорема Гёделя и машины Тьюринга
2.3. Незавершающиеся вычисления
2.4. Как убедиться в невозможности завершить вычисление?
2.5. Семейства вычислений; следствие Гёделя — Тьюринга
2.6. Возможные формальные возражения против
2.7. Некоторые более глубокие математические соображения
2.8. Условие -непротиворечивости
2.9. Формальные системы и алгоритмическое доказательство
2.10. Возможные формальные возражения против (продолжение)
Приложение а: геделизирующая машина тьюринга в явном виде
3 О невычислимости в математическом мышлении
02+02+02 02+02+12 02+02+22 02+12+12 02+12+22
02+22+22 12+12+12 12+12+22 12+22+12 22+22+22
не дает в сумме 7. На этом этапе вычисление завершается, а мы делаем вывод: 7 есть одно из искомых чисел, так как оно не является суммой квадратов трех чисел.
2.3. Незавершающиеся вычисления
Будем считать, что с задачей (А) нам просто повезло. Попробуем решить еще одну:
(B) Найти число, не являющееся суммой квадратов четырех чисел.
На этот раз, добравшись до числа 7, мы находим, что в виде суммы квадратов четырех чисел его представить вполне возможно: 7 = 12 + 12 + 12 + 22, поэтому мы переходим к числу 8 (сумма 8 = 02 + 02 + 22 + 22), далее — 9 (сумма 9 = 02 + 02 + 02 + З2) и 10 (10 = 02 + 02 + 12 + 32) и т.д. Вычисления все продолжаются и продолжаются (. . . 23 = 12 + 22 + 32 + 32, 24 = 02 + 22 + 22 + 42, . . . , 359 = 12 + 32 + 52 + 182, . . .) и завершаться, похоже, не собираются. Мы предполагаем, что искомое число, должно быть, невообразимо велико, и для его вычисления нашему компьютеру потребуется чрезвычайно большой промежуток времени и огромный объем памяти. Более того, мы уже начинаем сомневаться, существует ли оно вообще, это самое число. Вычисления все продолжаются и продолжаются, и конца им не видно. Вообще говоря, так оно и есть: описанная вычислительная процедура завершиться в принципе не может. Известна теорема, впервые доказанная в 1770 году великим французским (и отчасти итальянским) математиком Жозефом Луи Лагранжем, согласно которой в виде суммы квадратов четырех чисел можно представить любое число. Теорема эта, кстати, весьма непроста (доказать ее как-то пытался великий современник Лагранжа, швейцарский математик Леонард Эйлер, человек, отличавшийся удивительной математической интуицией, оригинальностью и продуктивностью, однако его постигла неудача).
Я, разумеется, не собираюсь докучать читателю подробностями доказательства Лагранжа, вместо этого рассмотрим одну не в пример более простую задачу:
(C) Найти нечетное число, являющееся суммой двух четных чисел.
Нисколько не сомневаюсь, что все и так уже все поняли, однако все же поясню. Очевидно, что вычисление, необходимое для решения этой задачи, раз начавшись, не завершится никогда. При сложении четных чисел, т. е. чисел, кратных двум,
0,2,4,6,8,10,12,14,16,...,
всегда получаются четные же числа; иными словами, никакая пара четных чисел не может дать в сумме нечетное число, т. е. число вида
1,3,5,7,9, 11, 13, 15,17,....
Я привел два примера ((В) и (С)) вычислений, которые невозможно выполнить до конца. Несмотря на то, что в первом случае вычисление и в самом деле никогда не завершается, доказать это довольно непросто, во втором же случае, напротив, бесконечность вычисления более чем очевидна. Позволю себе привести еще один пример:
(D) Найти четное число, большее 2, не являющееся суммой двух простых чисел.
Вспомним, что простым называется натуральное число (отличное от 0 и 1), которое делится без остатка лишь само на себя и на единицу; иными словами, простые числа составляют следующий ряд:
2, 3, 5, 7, 11, 13, 17, 19, 23, ....
Существует довольно высокая вероятность того, что отыскание решения задачи (D) также потребует незавершающейся вычислительной процедуры, однако полной уверенности пока нет. Для получения такой уверенности необходимо прежде доказать истинность знаменитой «гипотезы Гольдбаха», выдвинутой Гольдбахом в письме к Эйлеру еще в 1742 году и до сих пор недоказанной.
2.4. Как убедиться в невозможности завершить вычисление?
Мы установили, что вычисления могут как успешно завершаться, так и вообще не иметь конца. Более того, в тех случаях, когда вычисление завершиться в принципе не может, это его свойство иногда оказывается очевидным, иногда не совсем очевидным, а иногда настолько неочевидным, что ни у кого до сих пор не достало сообразительности однозначно такую невозможность доказать. С помощью каких методов математики убеждают самих себя и всех остальных в том, что такое-то вычисление не может завершиться? Применяют ли они при решении подобных задач какие-либо вычислительные (или алгоритмические) процедуры? Прежде чем мы приступим к поиску ответа на этот вопрос, рассмотрим еще один пример. Он несколько менее очевиден, чем (С), но все же гораздо проще (В). Возможно, нам удастся попутно получить некоторое представление о том, с помощью каких средств и методов математики приходят к своим выводам. В предлагаемом примере участвуют числа, называемые шестиугольными:
1,7, 19,37,61,91, 127, ...,
иными словами, числа, из которых можно строить шестиугольные матрицы (пустую матрицу на этот раз мы не включаем):
Каждое такое число, за исключением начальной единицы, получается добавлением к предыдущему числу соответствующего числа из ряда кратных 6:
6, 12, 18,24, 30,36, ....
Это легко объяснимо, если обратить внимание на то, что каждое новое шестиугольное число получается путем окружения предыдущего числа шестиугольным кольцом
причем число горошин в этом кольце обязательно будет кратно 6, а множитель при каждом увеличении шестиугольника на одно кольцо будет возрастать ровно на единицу.
Вычислим последовательные суммы шестиугольных чисел, увеличивая каждый раз количество слагаемых на единицу, и посмотрим, что из этого получится.
1 = 1, 1 + 7 = 8, 1 + 7 + 19 = 27,
1 + 7 + 19 + 37 = 64, 1 + 7+19 + 37 + 61 = 125.
Что же особенного в числах 1, 8, 27, 64, 125? Все они являются кубами. Кубом называют число, умноженное само на себя трижды:
1 = 13 = 1 x 1 x 1, 8 = 23 = 2 x 2 x 2, 27 = 33 = 3 x 3 x 3,
64 = 43 = 4 x 4 x 4, 125 = 53 = 5 x 5 x 5, ....
Присуще ли это свойство всем шестиугольным числам? Попробуем следующее число. В самом деле,
1 + 7 + 19 + 37 + 61 + 91 = 216 = 6 x 6 x 6 = 63.
Всегда ли выполняется это правило? Если да, то никогда не завершится вычисление, необходимое для решения следующей задачи:
(Е) Найти последовательную сумму шестиугольных чисел, начиная с единицы, не являющуюся кубом.
Думается, я сумею убедить вас в том, что это вычисление и в самом деле можно выполнять вечно, но так и не получить искомого ответа.
|
|
|
|
Прежде всего отметим, что число называется кубом не просто так: из соответствующего количества точек можно сложить трехмерный массив в форме куба (такой, например, как на рис. 2.1). Попробуем представить себе построение такого массива в виде последовательности шагов: вначале разместим где-нибудь угловую точку, а затем будем добавлять к ней, одну за другой, особые конфигурации точек, составленные из трех «плоскостей» — задней стенки, боковой стенки и потолка, как показано на рис. 2.2.
Рис. 2.1 Сферы, уложенные в кубический массив.
А теперь посмотрим с другой стороны
Рис. 2.2. Разберем куб на части — каждая со своей задней стенкой, боковой стенкой и потолком.
Посмотрим теперь на одну из наших трехгранных конфигураций со стороны, т. е. вдоль прямой, соединяющей начальную точку построения и точку, общую для всех трех граней. Мы увидим шестиугольник, подобный тому, что изображен на рис. 2.3. Точки, из которых складываются эти увеличивающиеся в размере шестиугольники, представляют собой, в сущности, те же точки, что образуют полный куб. То есть получается, что последовательное сложение шестиугольных чисел, начиная с единицы, всегда будет давать число кубическое. Следовательно, можно считать доказанным, что вычисление, требуемое для решения задачи (Е), никогда не завершится.
Рис. 2.3. Каждую часть построения можно рассматривать как шестиугольник.
Кто-то, быть может, уже готов упрекнуть меня в том, что представленные выше рассуждения можно счесть в лучшем случае интуитивным умозаключением, но не формальным и строгим математическим доказательством. На самом же деле, перед вами именно доказательство, и доказательство вполне здравое, а пишу все это я отчасти и для того, чтобы показать, что осмысленность того или иного метода математического обоснования никак не связана с его «формализованностью» в соответствии с какой-либо заранее заданной и общепринятой системой правил. Напомню, кстати, о еще более элементарном примере геометрического обоснования, применяемого для получения одного общего свойства натуральных чисел, — речь идет о доказательстве истинности равенства a * 6 = 6 * a, приведенном в § 1.19. Тоже вполне достойное «доказательство», хотя формальным его назвать нельзя.