Файл: Пеноуз Роджер. Тени разума. В поисках науки о сознании.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.06.2024

Просмотров: 708

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Роджер пенроуз

1.2. Спасут ли роботы этот безумный мир?

1.3. Вычисление и сознательное мышление

1.4. Физикализм и ментализм

1.5. Вычисление: нисходящие и восходящие процедуры

1.6. Противоречит ли точка зрения в тезису Черча—Тьюринга?

1.7. Хаос

1.8. Аналоговые вычисления

1.9. Невычислительные процессы

1.10. Завтрашний день

1.11. Обладают ли компьютеры правами и несут ли ответственность?

1.12. «Осознание», «понимание», «сознание», «интеллект»

1.13. Доказательство Джона Серла

1.14. Некоторые проблемы вычислительной модели

1.15. Свидетельствуют ли ограниченные возможности сегодняшнего ии в пользу ?

1.16. Доказательство на основании теоремы Гёделя

1.17. Платонизм или мистицизм?

1.18. Почему именно математическое понимание?

1.19. Какое отношение имеет теорема Гёделя к «бытовым» действиям?

1.20. Мысленная визуализация и виртуальная реальность

1.21. Является ли невычислимым математическое воображение?

Примечания

2 Геделевское доказательство

2.1. Теорема Гёделя и машины Тьюринга

2.2. Вычисления

2.3. Незавершающиеся вычисления

2.4. Как убедиться в невозможности завершить вычисление?

2.5. Семейства вычислений; следствие Гёделя — Тьюринга

2.6. Возможные формальные возражения против

2.7. Некоторые более глубокие математические соображения

2.8. Условие -непротиворечивости

2.9. Формальные системы и алгоритмическое доказательство

2.10. Возможные формальные возражения против (продолжение)

Примечания

Приложение а: геделизирующая машина тьюринга в явном виде

3 О невычислимости в математическом мышлении

3.1. Гёдель и Тьюринг

О психофизи(ологи)ческой проблеме

Р.Пенроуз. Тени ума: в поисках потерянной науки о сознании. Penrose r. Shadows of the mind: a search for the missing science of consciousness. - Oxford, 1994. - XVI, 457 p.

в то время как для имеем

Общее число точек в каждом случае одинаково, следовательно, справедливо равенство

В истинности этого равенства можно удостовериться, пред­ставив зрительно матрицу

Читая матрицу по строкам, можно сказать, что в ней три строки, каждая из которых содержит по пять точек, что соответствует числуv . Однако если эту же матрицу прочесть по столбцам, то получится пять столбцов по три точки в каждом, что соответству­ет числу . Равенство этих чисел очевидно, поскольку речь в каждом случае идет об одной и той же прямоугольной матрице, просто мы ее по-разному читаем. (Есть и альтернативный вари­ант: мы можем мысленно повернуть изображение на прямой угол и убедиться в том, что матрица, соответствующая числу , содержит то же количество элементов, что и матрица, соответ­ствующая числу .)

Важный момент описанной визуализации заключается в том, что она непосредственно дает нам нечто гораздо более общее, чем просто частное численное равенство . Иными словами, в конкретных числовых значениях , участвующих в данной процедуре, нет ничего особенного. Полученное правило будет применимо, даже если, скажем, , а b = 50 000123 555, и мы с уверенностью можем утверждать, что несмотря на то, что у нас нет ни малейшей возможности сколько-нибудь точно представить себе визуально прямоугольную мат­рицу такого размера (да и ни один современный компьютер не сможет перечислить все ее элементы). Мы вполне можем заклю­чить, что вышеприведенное равенство должно быть истинным — или что истинным должно быть равенство общего вида  — на основании, в сущности, той же самой визуализации, которую мы применяли для конкретного случая Нужно просто несколько «размыть» мысленно действительное количество строк и столбцов рассматриваемой матрицы, и равен­ство становится очевидным.


Я вовсе не хочу сказать, что все математические отношения можно с помощью верной визуализации непосредственно пости­гать как «очевидные», или же что их просто можно в любом случае постичь каким-то иным способом, основанным непосред­ственно на интуиции. Это далеко не так. Для уверенного понима­ния некоторых математических отношений необходимо строить весьма длинные цепочки умозаключений. Цель математического доказательства, по сути дела, в этом и заключается — мы стро­им цепочки умозаключений таким образом, чтобы на каждом этапе получать утверждение, допускающее «очевидное» пони­мание. Как следствие, конечной точкой умозаключения должно оказаться суждение, которое необходимо принимать как истин­ное, пусть даже оно само по себе вовсе и не очевидно.

Кое-кто, наверное, уже вообразил, что в таком случае можно раз и навсегда составить список всех «возможных» этапов умо­заключений и тогда всякое доказательство можно будет свести к вычислению, т. е. к простым механическим манипуляциям полу­ченными очевидными этапами. Доказательство Гёделя как раз и демонстрирует невозможность реализации такой процеду­ры. Нельзя совершенно избавиться от необходимости в новых «очевидно понимаемых» отношениях. Таким образом, матема­тическое понимание никоим образом не сводится к бездумному вычислению.

 


1.20. Мысленная визуализация и виртуальная реальность

Интуитивные математические процедуры, описанные в  имеют весьма ярко выраженный специфический геометрический характер. В математических доказательствах применяются и мно­гие другие типы интуитивных процедур, причем некоторые из них весьма далеки от «геометричности». Однако, как показы­вает практика, геометрические интуитивные представления чаще всего дают более глубокое математическое понимание. Полагаю, было бы весьма полезно выяснить, какие же именно физические процессы происходят в нашем мозге, когда мы визуализируем что-либо геометрически. Начнем хотя бы с того, что никакой ло­гической необходимости в том, чтобы непосредственным резуль­татом этих процессов было «геометрическое отражение» визуа­лизируемого объекта, по сути дела, не существует. Как мы увидим далее, здесь может получиться нечто совсем иное.

Здесь уместно провести аналогию с феноменом, именуе­мым «виртуальной реальностью». Феномен этот, согласно рас­пространенному мнению, имеет самое прямое отношение к теме «визуализации». Методы виртуальной реальности) позволяют создать компьютерную модель какой-либо не существующей в природе структуры, — например, здания на стадии архитектур­ного проекта, — затем модель проецируется в глаз наблюдателя-человека, который, предположительно, воспринимает ее как «ре­альное» здание. Совершая движения глазами, головой или, может быть, ногами, словно прогуливаясь вокруг демонстрируемого ему здания, наблюдатель может разглядывать его с разных сто­рон — точно так же, как если бы здание действительно было ре­альным (см. рис. 1.8). Согласно некоторым предположениям, выполняемые мозгом в процессе сознательной визуализации опе­рации (какой бы ни была их истинная природа) аналогичны вы­числениям, производимым при построении такой виртуальной модели. В самом деле, мысленно осматривая какую-то реаль­но существующую неподвижную структуру, человек, по всей ви­димости, создает в уме некую модель, которая остается неиз­менной, несмотря на постоянные движения его головы, глаз и тела, приводящие к непрерывной смене образов, возникающих на сетчатке его глаз. Такие поправки на движения тела играют весьма существенную роль при построении виртуальной реаль­ности, и высказывались предположения в том смысле, что нечто подобное должно происходить и при создании «мысленных моде­лей», представляющих собой результаты актов визуализации. Та­кие вычисления, разумеется, вовсе не обязаны иметь целью вос­произведение реальной геометрической структуры моделируемой конструкции (или ее «отражение»). Сторонникам точки зрения  в таком случае пришлось бы рассматривать сознательную визу­ализацию как результат своего рода численного моделирования окружающего мира в голове человека. Я же полагаю, что всякий раз, когда мы сознательно воспринимаем ту или иную визуальную сцену, сопровождающее этот процесс понимание представляет собой нечто, существенно отличное от моделирования мира ме­тодами вычислительного характера.


Можно также предположить, что внутри мозга функциони­рует нечто вроде «аналогового компьютера», в котором моде­лирование внешнего мира реализуется не с помощью цифровых вычислений, как в современных электронных компьютерах, а с помощью некоторой внутренней структуры, физическое поведе­ние которой каким-то однозначным образом отражает поведение моделируемой внешней системы. Допустим, например, что нам необходимо аналоговое устройство для моделирования движений некоторого внешнего твердого тела. Для создания такого устрой­ства мы, очевидно, воспользуемся весьма простым и естествен­ным способом. Мы отыщем внутри системы реальное физическое тело той же формы (но меньшего размера), что и моделируемый внешний объект; я, разумеется, ни в коем случае не утверждаю, что данная конкретная модель имеет какое бы то ни было пря­мое отношение к тому, что происходит внутри мозга. Движения упомянутого «внутреннего» тела можно рассматривать с разных сторон, т. е. в том, что касается внешних проявлений, аналоговая модель оказывается очень похожа на модель, полученную с по­мощью вычислительных методов. Можно даже создать на основе такой модели систему «виртуальной реальности», в которой вме­сто целиком вычислительной модели рассматриваемой структуры будет действовать ее реальная физическая модель, отличающа­яся от моделируемого «реального» объекта только размерами.

В общем случае аналоговое моделирование вовсе не обязано быть столь прямолинейным и примитивным. Вместо физического расстояния можно использовать в качестве параметра, например, электрический потенциал и т. п. Следует только удостовериться в том, что физические законы, управляющие внутренней струк­турой, в точности совпадают с физическими законами, которым подчиняется внешняя, моделируемая, структура. При этом нет никакой необходимости в том, чтобы внутренняя структура была похожа на внешнюю («отражала» ее) каким-либо очевидным образом.

Способны ли аналоговые устройства достичь результатов, недоступных для чисто вычислительного моделирования? Как уже упоминалось в современная физика не дает никаких оснований полагать, что с помощью аналогового моделирова­ния можно добиться чего-то такого, что принципиально неосу­ществимо при моделировании цифровом. Иными словами, если мы допускаем, что построение мысленных образов обусловлено какими-то невычислимыми процессами, то это означает, что объ­яснение данному феномену следует искать за пределами извест­ной нам физики.