ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 31.07.2024
Просмотров: 76
Скачиваний: 0
:Наверх:
Детекторы ионов
Первые масс-спектрометры, которые назывались масс-спектрографами, использовали в качестве детектора ионов фотопластинку и коллекторы, собирающие все ионы, попавшие в данную точку пространства (коллекторы Фарадея). Сейчас используются вторично-электронные умножители, в которых ион, попадая на первый электрод умножителя (динод), выбивает из него пучок электронов, которые в свою очередь, попадая на следующий динод, выбивают из него еще большее количество электронов и т.д. Другой вариант - фотоумножители, регистрирующие свечение, возникающее при бомбардировке ионами люминофора. Кроме того, используются микроканальные умножители, системы типа диодных матриц. Некоторые масс-спектрометры, как, например спектрометры ионного циклотронного резонанса измеряют электрический сигнал, наводимый ионами на металлической пластинке. Большие трудности возникают при детектировании ионов с массами более 100 кило Дальтон. При использовании времяпролетной масс-спектрометрии тяжелые ионы доускоряют перед умножителем или используют криодетекторы.
:Наверх:
Сопряжение масс-спектрометра с хроматографией
Задача аналитики органических веществ, (к которым можно отнести все биомолекулы), состоит в том, чтобы определить сколько компонентов составляет смесь, узнать что это за компоненты (идентифицировать их) и узнать сколько каждого соединения содержится в смеси. Для такого анализа обычно используется сочетание хроматографии с масс-спектрометрией. Приборы, в которых масс-спектрометрический детектор скомбинирован с хроматографом, называются хромато-масс-спектрометрами. Газовая хроматография подходит для сочетания с ионным источником масс-спектрометра с ионизацией электронным ударом или химической ионизацией, поскольку в колонке хроматографа соединения уже находятся в газовой фазе. Биологические соединения невозможно разделить на компоненты с помощью газовой хроматографии, но можно с помощью жидкостной хроматографии. Для сочетания жидкостной хроматографии с масс-спектрометрией сегодня используют источники ионизации в электроспрее (ESI) и химической ионизации при атмосферном давлении (APCI). Для сопряжения масс-спектрометрии с двумерным гель- электрофорезом для ионизации используется MALDI.
:Наверх:
Изотопия
Атомы состоят из ядра и электронных оболочек. Свойства атомов определяются тем, сколько протонов (положительно заряженных элементнарных частиц) содержит ядро. Ядро помимо протонов содержит и нейтроны. При равном количестве протонов ядро может содержать разное количество нейтронов. Атомы с одинаковым количеством протонов в ядре, но с разным количеством нейтронов отличаются по массе на одну или несколько единиц атомной массы (а.е.м.) и называются изотопами. Большинство элементов имеют определенный набор стабильных изотопов. Радиоактивные изотопы не являются стабильными и распадаются с образованием стабильных изотопов. Природная распространенность изотопов для каждого элемента известна. Некоторые элементы в прирорде являются моноизотопными, то есть 100 % природной распространенности приходится на один изотоп (например, Al, Sc, Y, Rh, Nb и т.д.), а другие имеют множество стабильных изотопов (S, Ca, Ge, Ru, Pd, Cd, Sn, Xe, Nd, Sa и т.д.). В технологической деятельности люди научились изменять изотопный состав элементов с целью получения каких-либо специфических свойств материалов (например, U235 имеет способность к спонтанной цепной реакции и может использоваться в качестве топлива для атомных электростанций или атомной бомбы) или использования изотопных меток (например, в медицине). Поскольку массы изотопов отличаются, а масс-спектрометрия измеряет массу, естественно, этот метод становится самым удобным для определения изотопного состава. В то же время, информация по изотопному составу помогает идентифицировать органические соединения и позволяет дать ответы на многие вопросы начиная с определения возраста пород для геологии и кончая определением фальсификатов многих продуктов и установлением места происхождения товаров и сырья.
В биологических и медицинских применениях масс-спектрометрии используются изотопные метки для количественного анализа смесей биомолекул.
Масс-спектрометры для изотопного анализа
Масс-спектрометры для определения изотопного состава должны быть очень точными. Практически во всех типах изотопных масс-спектрометров используются магнитные масс-анализаторы. Для анализа изотопного состава легких элементов (углерод, водород, кислород. сера, азот и т.д.) используется ионизация электронным ударом. В этом случае годятся все методы ввода газовой фазы, как и в органических масс-спектрометрах. Для анализа изотопов более тяжелых элементов используется термоионизация или ионизация в индуктивно-связанной плазме. Для анализа элементного состава чаще всего используются масс-спектрометры с индуктивно-связанной плазмой. С помощью этого прибора определяют из каких атомов составлено вещество. Этот же метод анализа может показывать и изотопный состав. Но лучше всего измерять изотопный состав с помощью специализированных изотопных приборов, регистрирующих ионы не на одном детекторе в разное время их прихода на него, а каждый ион на своем персональном коллекторе.
Характеристики масс-спектрометров и масс-спектрометрических детекторов
Важнейшими техническими характеристиками масс-спектрометров являются чувствительность, динамический диапазон, разрешение, скорость измерения масс-спектров.
Скорость сканирования
Масс-анализатор при фиксированых значениях магнитных и электромагнитных полей пропускает ионы с определенным соотношением массы и заряда, (кроме многоколлекторных приборов и ионно-циклотронного резонанса). Для того, чтобы проанализировать все ионы по отношению их массы к заряду он должен работать в режиме сканирования, то есть параметры его поля должны за заданый промежуток времени пройти все значения, нужные для пропускания к детектору всех интересующих ионов. Эта скорость изменения поля называется скоростью сканирования и должна быть как можно больше (соответственно, время сканирования должно быть как можно меньше), поскольку масс-спектрометр должен успеть измерить сигнал за короткое время, например за время выхода хроматографического пика, которое может составлять несколько секунд. При этом, чем больше масс-спектров за время выхода хроматографического пика будет измерено, тем точнее будет описан хроматографический пик, тем менее вероятно будет проскочить мимо его максимального значения. Самым медленным масс-анализатором является магнитный, время его сканирования без особой потери чувствительности составляет секунды. Квадрупольный масс-анализатор может разворачивать спектр за сотые доли секунды, а ионная ловушка еще быстрее. Процесс сканирования всех перечисленных выше масс-анализаторов является компромиссным - чем больше скорость сканирования, тем меньше времени тратиться на запись сигнала на каждое массовое число, тем хуже чувствительность. Самыми быстрыми масс-анализатороми являются времяпролетные. В них нет развертки. Они способны записывать масс-спектры со скоростью 40,000 в секунду.
:Наверх:
Разрешение
Разрешение или разрешающую способность можно определить как возможность анализатора разделять ионы с соседними массами (отличающимися на одну атомную единицу массы). Для точного определения масс ионов, которое необходимо для определения атомного состава иона, (что нужно, например, для идентифинации пептидов путем сравнения с базой данных; чем выше точность, тем меньше число кандидатов), надо так разделить пики в масс-спектрах, чтобы они не перекрывались и не влияли на положение максимумов, по которому масса и определяется. Для масс-анализаторов, разрешение определяется как отношение массы иона к ширине пика на 10 % или 50 % его высоты M/δM. Так например, разрешение 1000 на 10% означает, что пики с массами 100.0 а.е.м. и 100.1 а.е.м. отделяются друг от друга, то есть не накладываются вплоть до 10 % высоты.
Номинальной массой или массовым числом называют ближайшее к точной массе иона целое число в шкале атомных единиц массы. Например, масса иона водорода Н+ равна 1.00787 а.е.м., а его массовое число равно 1. А такие масс-анализаторы, которые, в основном, измеряют номинальные массы, называют анализаторами низкого разрешения. Мы написали "в основном", потому что сегодня есть и такие масс-анализаторы, которые формально относятся к низкоразрешающим, а на деле таковыми уже не являются.
Масс-спектрометры с двойной фокусировкой (магнитный сектор плюс электростатический) - приборы среднего или высокого разрешения. Типичным для магнитного прибора разрешением является >60,000, а работа на уровне разрешения 10,000 - 20,000 является рутинной. На масс-спектрометре ионно-циклотронного резонанса на массе около 500 а.е.м. можно легко достигнуть разрешения 500,000, что позволяет проводить измерения массы ионов с точностью до 4-5 знака после запятой. Разрешения в несколько тысяч также можно добиваться при использовании времяпролетных масс-анализаторов, однако, на высоких массах, в области которых, собственно этот прибор имеет преимущество перед другими, и этого разрешения хватает лишь для того, чтобы измерить массу иона с точностью +/- десятки а.е.м.
:Наверх:
Точность измерения массы
Как следует из вышесказанного, разрешение тесно связано с другой важной характеристикой - точностью измерения массы. Проиллюстрировать значение этой характеристики можно на простом примере. Массы молекулярных ионов азота (N2+)и монооксида углерода (СО+) составляют 28.00615 а.е.м. и 27.99491 а.е.м., соответственно (оба характеризуются одним массовым числом 28). Эти ионы будут регистрироваться масс-спектрометром порознь при разрешении 2500, а точное значение массы даст ответ - какой из газов регистрируется. Наиболее точное измерение массы возможно на приборах с двойной фокусировкой и на масс-спектрометрах ионно-циклотронного резонанса.
:Наверх:
Динамический диапазон
Если мы анализируем смесь, содержащую 99.99 % одного соединения или какого-либо элемента и 0.01% какой-либо примеси, мы должны быть уверены, что правильно определяем количество этих элементов. Для того, чтобы быть уверенным в результатах анализа, нужно иметь диапазон линейности в 4 порядка. Современные масс-спектрометры для органического анализа характеризуются динамическим диапазоном в 5-6 порядков, а масс-спектрометры для элементного анализа 9-10 порядков. Динамический диапазон в 10 порядков означает, что примесь в пробе будет видна даже тогда, когда она составляет 10 миллиграмм на 10 тонн.
Чувствительность
Это одна из важнейших характеристик масс-спектрометров. Чувствительность это величина, показывающая какое количество вещества нужно ввести в масс-спектрометр для того, чтобы его можно было детектировать. Для простоты будем рассматривать связанный с чувствительностью параметр - минимальное определяемое количество вещества, или порог обнаружения. Типичная величина порога обнаружения хорошего хромато-масс-спектрометра, используемого для анализа органических соединений, составляет 1 пико грамм при вводе 1 микролитра жидкости. Давайте представим себе что это такое. Если мы наберем специальным шприцом 1 микролитр жидкости (одна миллионная доля литра) и выпустим ее на листок чистой белой бумаги, то при ее рассмотрении в лупу мы увидим пятнышко, равное по размерам следу от укола тонкой иглой. Теперь представим себе, что мы бросили 1 грамм вещества (например, одну таблетку аспирина) в 1000 тонн воды (например, бассейн длиной 50 метров, шириной 10 метров и глубиной 2 метра). Тщательно перемешаем воду в бассейне, наберем шприцом 1 микролитр этой воды и заколем в хромато-масс-спектрометр. В результате анализа мы получим масс-спектр, который мы сможем сравнить с библиотечным спектром и методом отпечатков пальцев убедиться в том, что это действительно ацетилсалициловая кислота, иначе называемая аспирином.