ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.09.2024

Просмотров: 31

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Разновидности систем заземления

В России требования к заземлению и его устройство регламентируются Правилами устройства электроустановок (ПУЭ). Классификация типов систем заземления приводится в качестве основной из характеристик питающей электрической сети. ГОСТ Р 50571.2 рассматривает следующие системы заземления: TN-C, TN-S, TN-C-S, TT, IT.

Система TN Нейтраль источника глухо заземлена, корпусы электрооборудования присоединены к нейтральному проводу. Режим TN может быть трех видов: TN-C, TN-S, TN-C-S. Система TN-C Система TN-C (фр. Terre-Neutre-Combine) предложена немецким концерном АЭГ (AEG, Allgemeine Elektricitäts-Gesellschaft) в 1913 году. Рабочий ноль и PE-проводник (Protection Earth) в этой системе совмещены в один провод. Самым большим недостатком было образование линейного напряжения (в 1,732 раза выше фазного) на корпусах электроустановок при аварийном обрыве нуля. Несмотря на это, на сегодняшний день можно встретить данную систему заземления в постройках стран бывшего СССР. Система TN-S На замену условно опасной системы TN-C в 1930-х была разработана система TN-S (фр. Terre-Neutre-Separe), рабочий и защитный ноль в которой разделялись прямо на подстанции, а заземлитель представлял собой довольно сложную конструкцию металлической арматуры. Таким образом, при обрыве рабочего нуля в середине линии, корпуса электроустановок не получали линейного напряжения. Позже такая система заземления позволила разработать дифференциальные автоматы и срабатывающие на утечку тока автоматы, способные почувствовать незначительный ток. Их работа и по сей день основывается на законах Кирхгофа, согласно которым текущий по фазному проводу ток должен быть численно равным текущему по рабочему нулю току. Также можно наблюдать систему TN-C-S, где разделение нулей происходит в середине линии, однако в случае обрыва нулевого провода до точки разделения корпуса окажутся под линейным напряжением, что будет представлять угрозу для жизни при касании. Система TN-C-S В системе TN-C-S трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с точкой заземления трансформаторной подстанции. Для обеспечения этой связи на участке трансформаторная подстанция – электроустановки здания применяется совмещенный нулевой защитный и рабочий проводник (PEN), в основной части электрической цепи – отдельный нулевой защитный проводник (PE).


Система TT В системе TT трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с землёй через заземлитель, электрически не зависимый от заземлителя нейтрали трансформаторной подстанции. Система IT Нейтраль источника изолирована или заземлена через приборы или устройства, имеющие большое сопротивление, корпуса электрооборудования глухо заземлены. Система IT применяется, как правило, в электроустановках зданий и сооружений специального назначения.

ВЫВОДЫ

В качестве общих рекомендаций для выбора той или иной сети можно указать следующее: 1. Сети ТN-C и ТN-C-S не следует использовать из-за низкого уровня электро- и пожаробезопасности, а также возможности значительных электромагнитных возмущений. 2. Сети TN-S рекомендуются для статичных (не подверженных изменениям) установок, когда сеть проектируется «раз и навсегда». 3. Сети ТТ следует использовать для временных, расширяемых и изменяемых электроустановок. 4. Сети IT следует использовать в тех случаях, когда бесперебойность электроснабжения является крайне необходимой. Возможны варианты, когда в одной и той же сети следует использовать два или три режима. Например, когда вся сеть получает питание по сети TN-S, а часть ее через разделительный трансформатор по сети IT. Резюмируя изложенное выше, отметим, что ни один из способов заземления нейтрали и открытых проводящих частей не является универсальным. В каждом конкретном случае необходимо проводить экономическое сравнение и исходить из критериев: электробезопасности, пожаробезопасности, уровня бесперебойности электроснабжения, технологии производства, электромагнитной совместимости, наличия квалифицированного персонала, возможности последующего расширения и изменения сети.


Примечания

[1] пункт 1.1.29 ПУЭ [2] пункты 1.7.122 и 1.7.123 ПУЭ [3] 1.7.135 ПУЭ [4] При других типах неисправностей заземление менее эффективно, поэтому они здесь не рассматриваются [5] В схеме импульсного источника вторичного электропитания присутствуют входные проходные или обычные конденсаторы, включенные как между питающими проводниками, так и (в случае наличия металлического корпуса и трёхполюсной вилки) между каждым питающим проводником и корпусом прибора, в этом случае они представляют делитель напряжения, сообщающий корпусу потенциал, примерно равный половине напряжения питания. Этот потенциал обычно присутствует, даже когда прибор выключен имеющимися у него средствами. В наличии потенциала на корпусе можно убедиться с помощью неонового пробника.

В статье использованы материалы из Википедии, и сайта журнала «Новости Электротехники».