Файл: Водный режим растений.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 07.05.2019

Просмотров: 931

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Раздел 3. Водный режим растений

Лекция 3. Водный режим растений. Функции и формы воды в растениях.

Значение воды для жизнедеятельности растений.

Формы воды в клетке.

Корневая система как орган потребления воды.

Корневое давление, значение, механизм и методы определения. Гуттация и плач растений.

Формы воды в почве. Водные характеристики почвы.

Физиологическая засуха и ее причины. Коэффициент завядания.

Лекция 4. Транспорт воды по растению. Транспирация. Экология водного режима.

Механизмы передвижения воды по растению. Теория сцепления.

Транспирация, ее формы и физиологическое значение.

Количественные показатели транспирации.

Кутикулярная транспирация.

Устьичная транспирация и механизм ее регулирования.

Особенности водного обмена у растений разных экологических групп

Роль растений в круговороте воды в биосфере.

Транспирационный коэффициент - это количество воды в граммах, расходуемое растением на образование 1 грамма сухого вещества. Этот параметр зависит от климатических и почвенных условий и от вида растений (например, у просовидных злаков он относительно низок). Транспирационный коэффициент разных растений варьирует от 200 до 1000 и более. Зная транспирационный коэффициент, можно приблизительно вычислять поливные нормы для орошаемых культур в разных почвенно-климатических условиях и рационализировать приёмы орошения. Транспирационный коэффициент уменьшается с улучшением условий питания, увлажнения, с повышением плодородия почвы и уровня агротехники. Величину, обратную транспирационному коэффициенту, называют продуктивностью транспирации.

Продуктивность транспирации - это величина, обратная транспирационному коэффициенту и равна количеству сухого вещества в граммах, накопленного растением за период, когда оно испаряет 1 килограмм воды.

Относительная транспирация - это отношение воды, испаряемой листом, к воде, испаряемой со свободной водной поверхности той же площади за один и тот же период времени.

Экономичность транспирации - это количество испаряемой воды в миллиграммах на 1 килограмм воды, содержащейся в растении.

У растений одного вида в сходных условиях количество испаряемой воды тем выше, чем больше листовая поверхность. Так, с 1 га посева пшеницы выделяется около 2 тыс. тонн воды, кукурузы — 3,2 тыс. тонн, капусты — 8 тыс. тонн.

Основными методами определения интенсивности транспирации отдельных листьев и небольших растений являются весовой и потометрический. Для определения транспирационных характеристик ценозов применяют методы локального определения количества испаряемой влаги участком кроны или посева и последующую экстраполяцию.

Кутикулярная транспирация.

Кутикулярная транспирация. Снаружи листья имеют однослойный эпидермис, внешние стенки клеток которого покрыты кутикулой и воском, образующие эффективный барьер на пути движения воды. Кутикула состоит из кутина бесструктурного образования, лишённого корпускулярных и фибриллярных элементов; устойчива к химическим воздействиям. Она отсутствует на погруженных в воду органах водных растений, слабо развита у растений, обитающих в тени и на сырой почве, и особенно хорошо — у растений, нуждающихся в ограничении транспирации. Гладкая и блестящая кутикула листьев тропических растений отражает часть солнечных лучей и служит защитой от чрезмерной инсоляции. У большинства ксерофитов в кутикулярном слое откладываются бледно-жёлтые пигменты, обеспечивающие непроницаемость клеточной стенки для ультрафиолетовых лучей.

Интенсивность кутикулярной транспирации варьирует у разных видов растений. У молодых листьев с тонкой кутикулой она может составлять около половины всей транспирации. У зрелых листьев с более мощной кутикулой кутикулярная транспирация равна 1/10 общей транспирации. В стареющих листьях из-за повреждения кутикулы она может возрастать.


Таким образом, кутикулярная транспирация регулируется главным образом толщиной и целостностью кутикулы и других защитных покровных слоев на поверхности листьев.

Устьичная транспирация и механизм ее регулирования.

Устьица представляют собой щель в подъустьичную полость, окаймленную двумя замыкающими клетками серповидной формы. Стенки замыкающих клеток, обращенные к щели, образуют утолщения. Противоположные стенки тонкие. Устьичная щель ведёт в обширный межклетник – подустьичную полость. Устьице нередко бывает окружено двумя или несколькими клетками (прилегающими), отличающимися по форме от основной массы клеток эпидермиса. В основе устьичных движений лежит обратимое изменение тургора замыкающих клеток. Тонкие участки их стенок с повышением тургора растягиваются и вытягиваются в направлении от устьичной щели. В этом же направлении выгибаются и стенки, обращенные к щели. Ширина щели увеличивается, и устьице открывается. С понижением тургора замыкающих клеток устьице закрывается. Устьица играют важную роль в газообмене между листом и атмосферой, так как являются основным путем для водяного пара, углекислого газа и кислорода. Устьица находятся на обеих сторонах листа. Есть виды растений, у которых устьица располагаются только на нижней стороне листа. В среднем число устьиц колеблется от 50 до 500 на 1 мм2. Транспирация через устьица идет почти с такой же скоростью, как и с поверхности чистой воды. Это объясняется законом И. Стефана: через малые отверстия скорость диффузии газов пропорциональна не площади отверстия, а диаметру или длине окружности. Поэтому, хотя площадь устьичных отверстий мала по отношению к площади всего листа (0,5-2 %), испарение воды через устьица идет очень интенсивно.

Транспирация слагается из двух процессов: 1 - передвижения воды в листе из сосудов ксилемы по симпласту и, преимущественно, по клеточным стенкам, так как в стенках транспорт воды встречает меньшее сопротивление, 2 - испарения воды из клеточных стенок в межклетники и подъустьичные полости с последующей диффузией в окружающую атмосферу через устьичные щели (слайд 4.3). Чем меньше относительная влажность атмосферного воздуха, тем ниже его водный потенциал. Если водный потенциал воздуха меньше водного потенциала подъустьичных полостей, то молекулы воды испаряются наружу.

Основным фактором, влияющим на открывание и закрывание устьиц, является содержание воды в листе, в том числе и в замыкающих клетках устьиц (слайд 4.4). Высокая оводненность замыкающих клеток приводит к открыванию устьиц. При недостатке воды замыкающие клетки выпрямляются и устьичная щель закрывается. Кроме того, по мере увеличения водного дефицита в тканях растения повышается концентрация ингибитора роста абсцизовой кислоты. Она подавляет деятельность Н+-насосов в плазмалемме замыкающих клеток, вследствие чего снижается их тургор и устьица закрываются. Абсцизовая кислота также ингибирует синтез фермента -амилазы, что приводит к снижению гидролиза крахмала, поэтому сосущая сила замыкающих клеток уменьшается и устьица закрываются (слайд 4.5).


Так как замыкающие клетки устьиц содержат хлоропласты, синтез углеводов в процессе фотосинтеза в замыкающих клетках увеличивает их сосущую силу и вызывает поглощение воды, способствуя этим открыванию устьиц.

При снижении концентрации СО2 в подъустьичной полости ниже 0,03 %, тургор замыкающих клеток увеличивается и устьица открываются. Повышение концентрации СО2 в воздухе вызывает закрытие устьиц. Это происходит в межклетниках листа ночью, когда в результате отсутствия фотосинтеза и продолжающегося дыхания уровень углекислого газа в тканях повышается. Такое влияние углекислого газа объясняет, почему ночью устьица закрыты и открываются с восходом солнца. Сдвиг рН в щелочную сторону вследствие уменьшения концентрации СО2 увеличивает активность ферментов, участвующих в распаде крахмала, тогда как при кислом рН при повышении содержания СО2 в межклетниках повышается активность ферментов, катализирующих синтез крахмала.

На свету замыкающие клетки устьиц содержат значительно больше калия, чем в темноте. При открывании устьиц содержание калия в замыкающих клетках увеличивается в 4 раза при одновременном снижении его содержания в сопутствующих клетках. Установлено повышение содержания АТФ в замыкающих клетках устьиц в процессе их открывания. АТФ, образованная в процессе фотосинтетического фосфорилирования в замыкающих клетках, используется для усиления поступления калия. Усиленное поступление ионов калия повышает сосущую силу замыкающих клеток. В темноте ионы калия выделяются из замыкающих клеток и устьица закрываются.

Суточные колебания транспирации.

Периодичность суточного хода транспирации наблюдается у многих растений, но у разных видов растений устьица функционируют неодинаково (слайд 4.6). У деревьев, теневыносливых растений, многих злаков и других гидростабильных видов с совершенной регуляцией устьичной транспирации испарение воды начинается на рассвете, достигает максимума в утренние часы. В полдень транспирация снижается и вновь увеличивается в предвечерние часы при снижении температуры воздуха. Такой ход транспирации приводит к незначительным суточным изменениям осмотического давления и содержания воды в листьях. У видов растений, способных переносить резкие изменения содержания воды в клетках в течение дня, то есть у гидролабильных видов, наблюдается одновершинный суточный ход транспирации с максимумом в полуденные часы. В обоих случаях ночью транспирация минимальна или полностью прекращается.

Ночью у большинства растений устьица закрыты и газообмен и транспирация минимальны. В светлый период суток при благоприятных погодных условиях устьичные щели находятся в открытом состоянии. Через открытые устьица углекислый газ легко проникает во внутренние ткани растения, а кислород, образовавшийся в процессе фотосинтеза, а также пары воды выделяются в атмосферу.


Особенности водного обмена у растений разных экологических групп

Гидрофиты (гидратофиты) - растения, обитающие в воде, погружены в воду полностью или частично. Они регулируют постоянство состава внутренней среды с помощью механизмов защиты от избыточного поступления воды. У монадных форм зеленых водорослей, заселяющих, в основном, пресные воды, клеточные стенки замкнуты не полностью из-за наличия выростов цитоплазмы - жгутиков, с помощью которых они передвигаются. У всех монадных форм имеются пульсирующие вакуоли, посредством которых из клеток удаляются избыток воды и отходы жизнедеятельности. У гидрофитов с замкнутой клеточной стенкой ее противодавления достаточно для предотвращения поступления излишков воды в клетку. Первичными гидрофитами являются водоросли. Водные цветковые растения - это вторичные гидрофиты, происходящие от наземных форм.

По способности приспосабливать водный обмен к колебаниям водоснабжения различают две группы наземных растений: пойкилогидрические и гомойгидрические.

Пойкилогидрические организмы (бактерии, синезеленые водоросли, низшие зеленые водоросли, грибы, лишайники и другие) приспособились переносить значительный недостаток воды без потери жизнеспособности. При этом у них снижается интенсивность обмена веществ, клетки равномерно сжимаются. Протопласт их клеток при сильном обезвоживании переходит в состояние геля. Увеличение количества воды в среде приводит к возобновлению активного метаболизма в клетках. По характеру изменения таких показателей водного режима, как интенсивность транспирации, осмотическое давление, содержание воды в течение суток они относятся к гидролабильным растениям, так как у них значительно изменяются содержание воды и испарение.

Гомойгидрические растения (наземные папоротникообразные, голосеменные, цветковые) составляют большинство обитателей суши. Они обладают механизмами регуляции устьичной транспирации, а также корневой системой, обеспечивающей доставку воды. Поэтому даже при значительных изменениях влажности среды у этих растений не наблюдается резких колебаний содержания воды в клетках, в которых, как правило, развита вакуолярная система. Их клетки не способны к обратимому высыханию. У этих растений гидростабильный тип водного режима. Стабилизации водного режима у многих видов растений способствуют запасы воды в корнях, стеблях и запасающих органах. Гомойгидрические растения делятся на три экологические группы:

1. Гигрофиты (тонколистные папоротники, некоторые фиалки и другие), произрастающие в условиях повышенной влажности и недостаточной освещенности. Теневыносливые гигрофиты, с почти всегда открытыми устьицами, имеют гидатоды, через которые выделяют избыток воды в капельножидком состоянии. Гигрофиты плохо переносят почвенную и воздушную засуху.


2. Мезофиты (лиственные деревья, лесные и луговые травы, большинство культурных растений) обитают в среде со средним уровнем обеспеченности водой и не имеют ясно выраженных приспособлений к избытку или недостатку воды.

3. Ксерофиты живут в местах с жарким и сухим климатом и приспособлены к перенесению атмосферной и почвенной засухи. Ксерофиты делят на четыре группы.

Первые - избегающие засухи (эфемеры и эфемероиды). Эти растения обладают коротким вегетационным периодом, приурочивая весь жизненный цикл к периоду дождей и засуху переносят в форме семян. Эфемеры - это однолетники, срок жизни которых от всходов до вызревания семян сокращен до продолжительности влажного сезона в пустыне. Они очень быстро развиваются с началом дождей, быстро отцветают и завязывают плоды. С наступлением засухи они полностью отмирают, оставляя для воспроизводства жаростойкие семена. Некоторые виды эфемеров сократили продолжительность своего жизненного цикла до полутора месяцев. Среди эфемеров преобладают мезофиты Эфемероиды - многолетние растения. Подобно эфемерам, они развиваются только во влажный сезон года. Однако с наступлением сухого сезона они, в отличие от эфемеров, отмирают не полностью, а лишь сбрасывают фотосинтезирующие органы - листья или безлистные однолетние побеги. Многолетние органы являются одновременно и запасающими органами эфемероидов, накапливающими воду и питательные вещества. Во внетропических пустынях с морозными зимами это, как правило, подземные органы: клубни, луковицы, корневища. В тропических пустынях многолетние органы могут быть и надземными, в том числе луковицы, каудексы и древесные стволы (например, хоризии, баобабы и др.). Но во всех случаях отмирают ассимилирующие органы, листья или заменяющие их молодые зеленые побеги.

Вторая группа - растения, запасающие влагу (ложные ксерофиты). К этой группе растений относятся суккуленты (кактусы и растения семейства толстянковых). Эти растения живут в районах, где засушливые периоды сменяются периодами дождей. Они имеют толстые и мясистые стебли. Листья часто редуцированы, вся поверхность растений покрыта толстым слоем кутикулы, что существенно снижает их транспирацию. Суккуленты обладают неглубокой, но широко распространяющейся корневой системой. Клетки корня характеризуются сравнительно низкой концентрацией клеточного сока. Вода, запасаемая в мясистых органах, тратится очень медленно. Суккуленты обладают своеобразным обменом веществ. У них днем устьица закрыты, а ночью они открываются, что обеспечивает снижение расходования воды в процессе транспирации. Для суккулентов характерен САМ-тип фотосинтеза. Углекислый газ поступает через устьица ночью и усваивается с образованием органических кислот. В дневные часы углекислый газ вновь освобождается и используется в процессе фотосинтеза. Поэтому эти растения фотосинтезируют при закрытых днем устьицах. Растения этой группы не устойчивы к длительному водному стрессу.