Файл: Назначение и структура процессора персонального компьютера.pdf

ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 30.04.2023

Просмотров: 38

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Введение

Для того, что бы грамотно выбрать персональный компьютер надо знать его строение и новейшие тенденции в разработки компьютеров. Центральное процессорное устройство – основа персонального компьютера. От его выбора зависит быстродействие работы компьютера и функции, которые он может выполнить.

Объектом исследования является процессор персонального компьютера.

Предмет исследования его назначение, функции и характеристики.

Целью курсовой работы является проведение анализа процессоров персонального компьютера.

В курсовой работе решаются задачи:

  1. Исследовать назначения и структуру процессора персонального компьютера.
  2. Проанализировать функции процессора персонального компьютера.
  3. Провести классификацию процессоров персонального компьютера.

Результаты исследований в дальнейшем будут использоваться для написания дипломного проекта.

Глава 1. Назначение и структура процессора персонального компьютера

Процессор или центральное процессорное устройство является основным элементом электронно-вычислительной машины (компьютера) [1, 2, 3]. Процессор выполняет все функции по преобразованию данных: сложение, вычитание, сдвиг, логические операции и т.д.

Вначале персональные компьютеры имели один процессор, потом появился сопроцессор для обработки операций с числами с плавающей запятой, что существенно ускорило обработку вещественных чисел. В различных конфигурациях компьютеров может быть несколько процессоров (ядер) [3, 4, 5].

Основными частями процессора являются арифметико-логическое устройство, регистры и устройство управления [6, 7, 8, 23].

Арифметико-логическое устройство выполнят основные математические и логические операции (Рис.1.). Все вычисления производятся в двоичной системе счисления. От устройства управления зависит согласованность работы частей самого процессора и его связь с другими (внешними для него) устройствами. В регистрах временно хранятся текущая команда, исходные, промежуточные и конечные данные (результат вычислений арифметико-логическое устройство). Разрядность всех регистров одинакова.

Кэш данных и команд хранит часто используемые данные и команды. Обращение в кэш происходит намного быстрее, чем в оперативную память, поэтому, чем он больше, тем лучше.


Рис. 1. Упрощённая схема процессора.

Работает процессор под управлением программы, находящейся в оперативной памяти. Арифметико-логическое устройство, получив данные и команду, выполняет указанную операцию и записывает результат в один из свободных регистров.

Текущая команда находится в специально для нее отведенном регистре команд. В процессе работы с текущей командой увеличивается значение так называемого счетчика команд, который теперь указывает на следующую команду (если, конечно, не было команды перехода или останова).

Часто команду представляют как структуру, состоящую из записи операции (которую требуется выполнить) и адресов ячеек исходных данных и результата. По адресам указанным в команде берутся данные и помещаются в обычные регистры (в смысле не в регистр команды), получившийся результат тоже сначала оказывается в регистре, а уж потом перемещается по своему адресу, указанному в команде [9, 10, 11].

.

Тактовая частота процессора на сегодняшний день измеряется в гигагерцах (ГГц), Ранее измерялось в мегагерцах (МГц). 1МГц = 1 миллиону тактов в секунду [12, 13].

Процессор связан с другими устройствами (оперативной памятью) с помощью шин данных, адреса и управления. Разрядность шин всегда кратна 8 (понятно почему, если мы имеем дело с байтами), изменчива в ходе исторического развития компьютерной техники и различна для разных моделей, а также не одинакова для шины данных и адресной шины.

Разрядность шины данных говорит о том, какое количество информации (сколько байт) можно передать за раз (за такт). От разрядности шины адреса зависит максимальный объем оперативной памяти, с которым процессор может работать вообще.

На мощность (производительность) процессора влияют не только его тактовая частота и разрядность шины данных, также важное значение имеет объем кэш-памяти.

Глава 2. Функции процессора персонального компьютера

Основные функции любого процессора следующие [14, 15, 16, 17]:

выборка (чтение) выполняемых команд;

ввод (чтение) данных из памяти или устройства ввода/вывода;

вывод (запись) данных в память или в устройства ввода/вывода;

обработка данных (операндов), в том числе арифметические операции над ними;


адресация памяти, то есть задание адреса памяти, с которым будет производиться обмен;

обработка прерываний и режима прямого доступа.

Большинство современных процессоров для персональных компьютеров, в общем, основаны на той или иной версии циклического процесса последовательной обработки информации, изобретённого Джоном фон Нейманом [18, 19, 20].

Этапы цикла выполнения:

Процессор выставляет число, хранящееся в регистре счётчика команд, на шину адреса, и отдаёт памяти команду чтения;

Выставленное число является для памяти адресом; память, получив адрес и команду чтения, выставляет содержимое, хранящееся по этому адресу, на шину данных, и сообщает о готовности;

Процессор получает число с шины данных, интерпретирует его как команду (машинную инструкцию) из своей системы команд и исполняет её;

Если последняя команда не является командой перехода, процессор увеличивает на единицу (в предположении, что длина каждой команды равна единице) число, хранящееся в счётчике команд; в результате там образуется адрес следующей команды;

Снова выполняется п. 1.

Данный цикл выполняется неизменно, и именно он называется процессом (откуда и произошло название устройства).

Во время процесса процессор считывает последовательность команд, содержащихся в памяти, и исполняет их. Такая последовательность команд называется программой и представляет алгоритм работы процессора. Очерёдность считывания команд изменяется в случае, если процессор считывает команду перехода - тогда адрес следующей команды может оказаться другим. Другим примером изменения процесса может служить случай получения команды останова или переключение в режим обработки прерывания.

Команды центрального процессора являются самым нижним уровнем управления компьютером, поэтому выполнение каждой команды неизбежно и безусловно. Не производится никакой проверки на допустимость выполняемых действий, в частности, не проверяется возможная потеря ценных данных. Чтобы компьютер выполнял только допустимые действия, команды должны быть соответствующим образом организованы в виде необходимой программы.

Скорость перехода от одного этапа цикла к другому определяется тактовым генератором. Тактовый генератор вырабатывает импульсы, служащие ритмом для центрального процессора. Частота тактовых импульсов называется тактовой частотой.


Глава 3. Классификация процессоров персонального компьютера

В технической литературе, пресс-релизах, а также в предварительных анонсах разработчиков и производителей нередко используются кодовые наименования процессоров и их архитектур. Однако после официального объявления эти же изделия становятся известны уже под другими именами. При этом из маркетинговых соображений процессорам, созданным по разной технологии и имеющим отличия в архитектуре своих ядер, часто присваиваются одинаковые имена. Такое положение вещей дезорганизует не только начинающих пользователей, но нередко и специалистов.

Ниже представлена попытка классификации и расшифровки фирменных (торговых марок) и кодовых имен процессоров, а также их ядер с приведением кратких характеристик. В качестве основы использована статья  с добавлением материалов, опубликованных на сайтах и в фирменной документации производителей [21, 22, 23].

3.1.Процессоры Интел Пентиум

Intel Pentium – появились в 1993 году.(Рис.2.). Первое поколение Pentium носило кодовое имя P5, а также i80501, напряжение питания было 5 В.

Рис. 2. Процессор Интел Пентиум

В 1997 году появились Pentium MMX. Добавился новый набор из 57 команд MMX. Технология – 0,35 мкм. Напряжение питания ядра уменьшилось до 2,8 В.

В ноябпе 1995 года выпустили Pentium Pro –процессоры шестого поколения. Впервые применена кэш-память L2, объединенная в одном корпусе с ядром и работающая на частоте ядра процессора.

В мае 1997 года вышло семейство Pentium II/III .

Pentium II (Klamath, Deschutes, Katmai) предназначено для массового рынка ПК среднего уровня,

Celeron (Covington, Mendocino, Dixon и т.д.) – для недорогих компьютеров,

Xeon (Xeon, Tanner, Cascades и т.д.) – для высокопроизводительных серверов и рабочих станций.

В 1998 году появилось семейство процессоров Celeron для недорогих компьютеров

Dixon – наименование ядра, а также кодовое имя процессоров, ориентированных на применение в портативных компьютерах. Технология – 0,25 мкм, в дальнейшем – 0,18 мкм. Объем кэш-памяти первого уровня – 32 Кбайта. Как и в Mendocino, кэш-память L2 расположена на чипе, однако ее объем увеличен до 256 Кбайт. Тактовая частота – 300-500 МГц, частота шины – 66 МГц. Официальная классификация – мобильные процессоры Pentium II.

Coppermine – наименование ядра процессоров Pentium III и Celeron. Технология – 0,18 мкм. Характеризуется наличием интегрированных на чипах процессоров 256 Кбайт кэш-памяти L2 для Pentium III и 128 Кбайт – для Celeron. Частота – от 533 МГц и выше. Наряду с FSB100 МГц версиями Pentium III выпущены и варианты FSB133 МГц. Последние процессоры, рассчитанные на Slot 1, постепенно были вытеснены изделиями в конструктиве FC-PGA 370, рассчитанными на разъем Socket 370. Частота шины для процессоров Celeron – 66 МГц, а начиная с модели Celeron 800 – 100 МГц. Напряжение питания ядра – от 1,5 В до 1,7 В.


Coppermine T – наименование ядра процессоров Pentium III и Celeron. Является переходной ступенью от ядра архитектуры Coppermine к ядру архитектуры Tualatin. Создан по технологии 0,18 мкм. Ориентирован на работу с чипсетами, поддерживающими процессоры с ядром Tualatin.

В 2003 году выпустили процессоры Banias. В чип интегрированы вычислительное ядро процессора, графическое ядро, а также северный мост чипсета.

Xeon – официальное наименование линейки процессоров, ориентированных на использование в составе мощных серверов и рабочих станций.

Первые варианты были построены на ядре Deschutes. Являются заменой процессоров Pentium Pro. Технология – 0,25 мкм. Процессорный разъем Slot 2. Процессоры этого типа способны работать в мультипроцессорных конфигурациях. Кэш-память L2 имеет объем 512, 1024, 2048 Кбайт, что во многом определяет высокую стоимость и тепловыделение.

Принципиально новые компьютеры получили название Pentium 4.

К этой серии относятся процессоры Willamette и Northwood.

3.2.Процессоры AMD

Рис. 3. Процессор AMD

K5 – первые процессоры AMD, анонсированные в качестве конкурента Pentium. Разъем – Socket 7. Подобно Cyrix 6x86, использовали PR-рейтинг с показателями от 75 до 166 МГц. При этом используемая частота системной шины составляла от 50 до 66 МГц. Кэш-память L1 – 24 Кбайт (16 Кбайт для инструкций и 8 Кбайт для данных). Кэш-память L2 расположена на материнской плате и работает на частоте процессорной шины. К5 степпинг 0 имел кодовое имя "SSA5", а у степпингов 1, 3, 5 было кодовое имя "5k86". Стоит отметить, что до 5k86 существовал процессор AMD 5x86-P75, где P75 это рейтинг, а реальная частота была его была 133 МГц (33 x 4), процессор была рассчитан под Socket 5.

K6 – процессоры, анонсированные в качестве конкурента Pentium II. Первые модели производились по технологии 0,35 мкм, в дальнейшем – 0,25 мкм (кодовое имя "Little Foot"). Процессоры работали на частоте от 166 до 233 МГц. Были созданы на базе дизайна процессора 686 от приобретенной AMD компании NexGen. По сравнению со своими предшественниками получили модуль MMX, увеличился объем кэша L1 – до 64 Кбайт (по 32 Кбайт для инструкций и данных).

K6-2 – следующее поколение K6 с кодовым именем "Chomper". Процессор вышел в мае 1998 года, основным усовершенствованием является поддержка дополнительного набора инструкций 3DNow! и частоты системной шины 100 МГц. Кэш-память L1 – 64 Кбайт (по 32 Кбайт для инструкций и данных), кэш L2 находится на материнской плате и может иметь объем от 512 Кбайт до 2 Мбайт, работая на частоте шины процессора. Первые модели имели частоту ядра 266 МГц.