Файл: История развития средств вычислительной техники.pdf

ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 17.05.2023

Просмотров: 249

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Введение

В настоящее время информатика и ее практические результаты становятся важнейшим двигателем научно-технического прогресса и развития человеческого общества. Ее технической базой являются средства обработки и передачи информации. Скорость их развития поразительна, в истории человечества этому бурно развивающемуся процессу нет аналога. Теперь уже очевидно, что XXI век будет веком максимального использования достижений информатики в экономике, политике, науке, образовании, медицине, быту, военном деле и т. д.

История создания средств цифровой вычислительной техники уходит в глубь веков. Она увлекательна и поучительна, с нею связаны имена выдающихся ученых мира.

Начиная с 1950 года, каждые 7-10 лет кардинально обновлялись конструктивно-технологические и программно-алгоритмические принципы построения и использования ЭВМ. В связи с этим правомерно говорить о поколениях вычислительных машин. Условно каждому поколению можно отвести 10 лет.

ЭВМ проделали большой эволюционный путь в смысле элементной базы (от ламп к микропроцессорам) а также в смысле появления новых возможностей, расширения области применения и характера их использования.

Деление ЭВМ на поколения - весьма условная, нестрогая классификация вычислительных систем по степени развития аппаратных и программных средств, а также способов общения с ЭВМ.

К первому поколению ЭВМ относятся машины, созданные на рубеже 50-х годов: в схемах использовались электронные лампы. Команд было мало, управление - простым, а показатели объема оперативной памяти и быстродействия - низкими. Быстродействие порядка 10-20 тысяч операций в секунду. Для ввода и вывода использовались печатающие устройства, магнитные ленты, перфокарты и перфоленты.

Ко второму поколению ЭВМ относятся те машины, которые были сконструированы в 1955-65 гг. В них использовались как электронные лампы, так и транзисторы. Оперативная память была построена на магнитных сердечниках. В это время появились магнитные барабаны и первые магнитные диски. Появились так называемые языки высокого уровня, средства которых допускают описание всей последовательности вычислений в наглядном, легко воспринимаемом виде. Появился большой набор библиотечных программ для решения различных математических задач. Машинам второго поколения была свойственна программная несовместимость, которая затрудняла организацию крупных информационных систем, поэтому в середине 60х годов наметился переход к созданию ЭВМ, программно совместимых и построенных на микроэлектронной технологической базе.


Третье поколение ЭВМ. Это машины, создаваемые после 60х годов, обладающих единой архитектурой, т.е. программно совместимых. Появились возможности мультипрограммирования, т.е. одновременного выполнения нескольких программ. В ЭВМ третьего поколения применялись интегральные схемы.

Четвертое поколение ЭВМ. Это нынешнее поколение ЭВМ, разработанных после 1970 г. Машины 4го поколения проектировались в расчёте на эффективное использование современных высокоуровневых языков и упрощение процесса программирования для конечного пользователя.

В аппаратурном отношении для них характерно использование больших интегральных схем как элементной базы и наличие быстродействующих запоминающих устройств с произвольной выборкой, объемом несколько Мбайт.

Машины 4-го поколения- многопроцессорные, многомашинные комплексы, работающие на внеш. память и общее поле внеш. устройств. Быстродействие достигает десятков миллионов операций в сек, память - нескольких млн. слов.

Переход к пятому поколению ЭВМ уже начался. Он заключается в качественном переходе от обработки данных к обработке знаний и в повышении основных параметров ЭВМ. Основной упор будет сделан на «интеллектуальность».

На сегодняшний день реальный «интеллект», демонстрируемый самыми сложными нейронными сетями, находится ниже уровня дождевого червя, однако, как бы ни были ограничены возможности нейронных сетей сегодня, множество революционных открытий, могут быть не за горами.

Целью данной работы является изучение истории развития вычислительной техники.

Для достижения поставленной цели решались следующие задачи:

- рассмотреть основные периоды развития вычислительной техники;

- изучить поколения ЭВМ;

- проанализировать тенденции развития вычислительной техники.

Работа состоит из введения, двух глав, заключения и списка использованных источников.

Глава 1. Теоретические основы развития вычислительной техники

В истории ВТ можно выделить следующие четыре периода:

- домеханический (период абака);

- механический;

- электромеханический;

- электронный.


1.1 Домеханический и механический периоды

В домеханический период использовались подсобные средства для счета и создавались таблицы, календари, устройства и приборы, облегчающие счет человеку. Вообще потребность в счете возникла у людей в давние времена. Вначале регистрация счета была довольно примитивной: счет либо осуществлялся на костяных или каменных орудиях труда, на которых делались зарубки, либо сводился к перекладыванию по определенным правилам камешков, костяшек, дощечек. В качестве математических приемов счисления уже в IV тысячелетии до н.э., надо полагать, применялась непозиционная (неоднозначная) система. А тысячу лет спустя появилась позиционная (шестидесятичная) система счисления.

Первое свидетельство о средствах подсчета относится примерно к 3-тысячному году до н.э. Именно этим временем датируется найденная археологами вблизи местечка Вестаница в Чехии т.н. «вестаницкая кость» с зарубками. Тогда же месопотамские математики использовали табулированные величины (таблицы обратных величин, умножения, второй и третьей степени, квадратных и кубических корней), составлялись календарные расчеты астрономических явлений.

В произведениях древнегреческих поэта Гомера и драматурга Аристофана, относящихся к V-IV вв. до н.э., упоминается о распространении пальцевого счета, который зародился, очевидно, ранее. Его до сих пор используют в ряде случаев биржевые маклеры. В середине I тысячелетия до н.э. были созданы древнейшие из вычислительных устройств: «саламинская доска» — на острове Саламин в Эгейском море, «абак» — в Древней Греции и Риме, а затем в Западной Европе, «суанпан» — в Китае, «серобян» — в Японии. Они представляли собой доски из бронзы, камня, дерева, слоновой кости, цветного стекла с полосковыми углублениями, в которых перемещались с целью вычисления кости или камешки (калькули). Эти счеты просуществовали до эпохи Возрождения[1].

Выдающимся событием I тысячелетия н.э. было создание в IX в. «Арифметического трактата» узбекским ученым Мухаммедом бен Муса ал-Хорезми (Мухаммедом сыном Мусы из Хорезма). В XII в. трактат был переведен с арабского на латинский язык средневековой Европы. Европейцы впервые познакомились с десятичной системой счисления, пришедшей к арабам из Индии. Широко в мире стали известны четыре арифметические действия, а сами их правила долгое время назывались именем ал- Харезми — алхоризм, algorithmi, алгоритм. Это не могло не способствовать развитию средств вычислительной техники. В эпоху Возрождения появились канцелярские счеты, пришедшие в Европу с Востока. В начале XVII в. стало известно несколько их устройств.


Одним из них были палочки Непера, позволявшие производить умножение. Другим было устройство, которое называется сейчас логарифмической линейкой. В России средства, облегчавшие вычисления, также были известны еще в давние времена. Так, при строительстве храмов в Киевской Руси применялись графики и специальные устройства для определения размеров и форм куполов, арок и других элементов архитектуры. В XVI в. здесь широко использовался «счет костьми» при измерении вотчинных и поместных владений, государственных земель, а также при подсчетах в торговле и артиллерии.

Для облегчения налоговых счислений была создана т.н. «сошная арифметика», в которой соха принималась за единицу счета, a в дальнейшем — «дощатый счет» и конторские счеты.

Механический период означал появление машин, в которых операции выполнялись механизмами, приводившимися в действие человеком. Уже во времена средневековья стали механически интерпретировать и воспроизводить функции человеческого мозга. Так, «мыслительная машина» средневекового богослова Луллия, дававшая ответы' на вопросы «сколько?», «когда?», «какой из двух?» и др.. представляла собой ПОПЫТКА механического воспроизведения самого процесса мышления человека.

Вопросы и ответы в ней строились на основе таких характеристик, как грех, добродетель и т.п. Один из проектов механической вычислительной машины принадлежит выдающемуся художнику и мыслителю эпохи итальянского Возрождения Леонардо да Винчи (1452—1519 гг.). Он набросал эскиз тринадцатиразрядного суммирующего устройства с десятизубными колесами. Этот набросок был обнаружен в конце 60-х годов XX в. в архиве автора, хранящемся в Национальной библиотеке Мадрида. В соответствии с ним уже в наши дни американская фирма по производству компьютеров IBM в целях рекламы построила действующую машину.

Первая счетная машина, о которой сохранились сведения, описана в 1623 г. немецким профессором В. Шиккардом. Нет точных данных, была ли она построена, но в начале 60-х гг. нашего века ее сконструировали по этим описаниям ученые Тюрингского университета. Операции сложения и вычитания осуществлялись в ней механически, а умножения и деления — с элементами механизации. Более известна машина французского математика, физика и философа Б. Паскаля. Молодой. 18- летний Паскаль, независимо от В. Шиккарда, в течение трех лет упорного труда (1641-1644) создал машину («Паскалину»), которая могла суммировать. Он делал ее в помощь отцу — правительственному ревизору финансов.


О ней ходили легенды и писали стихи. Весь высший свет стекался в Люксембургский дворец, чтобы посмотреть на удивительное изобретение. Его автор получил королевскую привилегию на изготовление и продажу своей машины. В настоящее время существует более 50 экземпляров машины Паскаля. Несколько ее моделей демонстрируется в одном из музеев Парижа.

Вычислительную машину, с помощью которой можно было складывать, умножать и делить, изобрел знаменитый немецкий математик и философ Г. Лейбниц. В 1673 г. он представил ее в Академию наук в Париже. Немало вычислительных приборов было создано в России — М. В. Ломоносовьм, Е. Г. Кузнецовым (верстметр), Е. Якобсоном (девятиразрядная суммирующая машина) и др.

Последний был механиком из Несвижа Минского воеводства. Его машина, датируемая не позднее 1770 г., хранится в музее им. М. В. Ломоцосова в Санкт-Петербурге. Конечно, первые машины были несовершенны. Дороговизна изготовления, частые поломки и сложность устройства препятствовали их широкому практическому применению. Они выпускались в одном или нескольких экземплярах.

Массовое производство вычислительных машин впервые организовал К. Томас — основатель и руководитель двух парижских страховых обществ. В 1820 г. он построил вычислительную машину, в которой был использован принцип работы ступенчатого валика в машине Лейбница, и начал ее изготовление на рынок.

Постепенно Томас совершенствовал свои машины. Так было положено начало счетному машиностроению. Изучив счетную машину Томаса, инженер Петербургской государственной экспедиции бумаг В. Т. Однер в 1873 г, построил знаменитый арифмометр. В 1896 г. на Нижегородской выставке эта машина была удостоена серебряной медали, а в 1900 г. на Всемирной выставке в Париже — золотой медали. Через три года на выставке в Чикаго она вновь отмечается высшей наградой. В России впервые в мире было организовано ее фабричное производство.

Конструкция оказалась настолько удачной, что она по существу не менялась более 100 лет. Впоследствии в конструировании и совершенствовании арифмометров принимали участие многие ученые, в том числе и выдающийся русский ученый П. Л. Чебышев. В 1878 г. он сконструировал и построил оригинальную машину для выполнения сложения, а в 1882 г. — первую автоматическую вычислительную машину, принцип работы которой долгое время применялся в большинстве механических машин. Модель счетной машины Чебышева экспонировалась в 1913 г. на Всемирной выставке в Париже. В настоящее время она хранится в Парижском музее.