Файл: Применение объектно-ориентированного подхода при проектировании информационной системы (Структура объектно-ориентированного программирования).pdf

ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 19.06.2023

Просмотров: 54

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Глава II Диаграммы

2.1 Диаграммы классов

Диаграммы классов являются центральным звеном объектно-ориентиро­ванных методов. Диаграмма классов определяет типы объектов системы и раз­личного рода статические связи, которые существуют между ними. Имеются два основных вида статических связей:

• ассоциации (например, клиент может сделать заказ);

• подтипы (частный клиент является разновидностью клиента).

Рис. 2 Диаграмма классов

На диаграммах классов изображаются также атрибуты классов, операции классов и ограничения, которые накладываются на связи между объектами.

На рис.2 изображена типичная диаграмма классов. Перед тем как присту­пить к описанию диаграмм классов, следует обратить внимание на один важ­ный момент, связанный с характером использования этих диаграмм разработ­чиками. Этот момент обычно никак не документируется, однако оказывает су­щественное воздействие на способ интерпретации диаграмм и поэтому имеет ножное отношению к тому, что описывается с помощью модели.

Построение диаграмм классов можно рассматривать в различных аспектах:

Концептуальный аспект диаграммы классов отображают поня­тия изу­чаемой предметной области (моделируемой организации). Эти понятия, естественно, будут соответствовать реализующим их классам, однако такое прямое соответствие зачастую отсутствует. На самом деле концептуальная модель может иметь весьма слабое отношение или вообще не иметь никакого отношения к реализующему ее программному обеспечению, поэтому ее мож­но рассматривать как не зависимую от средств реализации (языка программирования);

• аспект спецификации модель спускается на уровень ПО, но рассмат­риваются только интерфейсы, а не программная реализация классов (под ин­терфейсом здесь понимается набор операций класса, видимых извне);

• аспект реализации - модель действительно определяет реализацию клас­сов ПО. Этот аспект наиболее важен для программистов.

Понимание аспекта имеет большое значение как для построения, так и для чтения диаграмм классов. К сожалению, различия между аспектами не столь отчетливы, и большинство разработчиков при построении диаграмм допускают их смешение.

При построении диаграммы необходимо выбрать единственный аспект. При чтении диаграммы следует выяснить, в соответствии с каким аспектом она строилась. Если нужно интерпретировать эту диаграмму правильным образом, то без такого знания не обойтись.


Точка зрения на диаграммы классов, не будучи собственно фор­мальной частьюUML, однако при построении и анализе моделей является крайне важ­ной. Конструкции UML можно использовать с любой из трех точек зрения. Большинство опытных разработчиков-программистов предпочитают аспект реализации. С другой стороны, очевидно, что построение диаграмм классов на стадии формирова­ния требований к ПО должно выполняться с концептуальной точки зрения.

На рис.2 изображена простая модель классов, связанная с обработкой заказов клиентов. Опишем каждый фрагмент модели и рассмотрим его возможную интерпретацию с различных точек зрения.

Ассоциации представляют собой связи между экземплярами классов (лич­ность работает в компании, компания имеет ряд офисов).

С концептуальной точки зрения ассоциации представляют собой концеп­туальные связи между классами. На диаграмме показано, что Заказ должен по­ступить от единственного Клиента, а Клиент в течение некоторого времени может сделать несколько Заказов. Каждый из этих Заказов содержит несколько Строк заказа, каждая из которых соответствует единственному Продукту.

Каждая ассоциация обладает двумя ролями; каждая роль представляет со­бой направление ассоциации. Таким образом, ассоциация между Клиентом и Заказом содержит две роли: одна от Клиента к Заказу, другая - от Заказа к Кли­енту.

Роль может быть явно поименованная с помощью метки. Например, роль ассоциации в направлении от Заказа к Строкам заказа называется «позиция за­каза». Если такая метка отсутствует, роли присваивается имя класс – цели – таким образом, роль ассоциации от Заказа к Клиенту может быть названа Клиент (термины «начало» (source) и «цель» (target) употребляются для обозначения классов, являющихся соответственно начальным и конечным для ассоциации).

2.2 Диаграммы взаимодействия

Диаграммы взаимодействия (interaction diagrams) являются мо­делями, опи­сывающими поведение взаимодействующих групп объ­ектов.

Как правило, диаграмма взаимодействия охватывает поведение объектов в рамках только одного варианта использования. На такой диаграмме отображаются ряд объектов и те сообщения, которыми они обмениваются между собой.

Проиллюстрируем данный подход на примере достаточно простого вари­анта использования, который описывает следующее поведение:

  • Окно Ввода Заказа посылает Заказу сообщение "приготовиться".
  • Заказ посылает данное сообщение каждой Строке заказа в дан­ном Заказе.
  • Каждая Строка заказа проверяет состояние определенного Запа­са товара:

Если данная проверка удовлетворяется (результат -true), то Строка заказа удаляет соответствующее количество товара из Запаса.

В противном случае количество Запаса снижается до уровня повторного заказа, и запас запрашивает новую поставку товара.

Существуют два вида диаграмм взаимодействия: диаграммы последова­тельности (sequence diagrams) и кооперативные диаграммы (collaborationdia­grams).

На диаграмме последовательности объект изображается в виде пря­мо­угольника на вершине пунктирной вертикальной линии (рис.3).

Эта вертикальная линия называется линией жизни (lifeline) объекта. Она представляет собой фрагмент жизненного цикла объекта в процессе взаимодей­ствия. Такую форму представления впервые ввел Ивар Якобсон.

Каждое сообщение представляется в виде стрелки между лини­ями жизни двух объектов. Сообщения появляются в том порядке, как они показаны на странице - сверху вниз. Каждое сообщение помечается, как минимум, именем сообщения; при желании можно добавить также аргументы и некоторую управ­ляющую информацию и, кроме того, можно показать само делегирование

Рис. 3 Диаграмма последовательности

(self-delegation) — сообщение, которое объект посылает самому себе, при этом стрелка сообщения указывает на ту же самую линию жизни.

Из всей возможной управляющей информации два ее вида имеют сущест­венное значение. Во-первых, это условие, показывающее, когда посылается со­общение (например, [нуженПовторныйЗаказ = "true"]). Сообщение посылается только при выполнении дан­ного условия. Другой полезный управляющий маркер - это маркер итерации, показывающий, что сообщение посылается много раз для множества объектов-адресатов (например, * приготовиться).

Диаграммы последовательности очень просты и наглядны (в этом заклю­чается самое большое их достоинство) и существенно помогают разобраться в процессе поведения системы.

Диаграмма (см. рис. 3) содержит возврат, означающий не новое сообще­ние, а возврат из сообщения. На диаграмме возврат отличается от обычных сообщений тем, что его стрелка не сплошная, а имеет вид пары линий.

Диаграммы последовательности можно также использовать для представ­ления параллельных процессов.

На рис. 4 изображен ряд объектов, участвующих в проверке банковской транзакции. В момент создания Транзакции она порождает Координатор Тран­закции в целях координации проверок, выполненных Транзакцией. Этот коор­динатор создает несколько объектов Транзакционного Контролера (в данном случае два объекта), каждый из которых отвечает за определенную проверку. Такой процесс облегчает создание различных дополнительных процессов про­верки, поскольку каждая проверка вызывается асинхронно и выполняется па­раллельно с другими.


Рис.4 Параллельные процессы и активизации

Когда Проверка Транзакции завершается, она посылает соответствующее сообщение Координатору Транзакции. Координатор проверяет, все ли проверки сообщили о своем выполнении. Если нет, то координатор не выполняет никаких действий. Если же все проверки завершились успешно, как в данном случае, то координатор сообщает Транзакции о нормальном завершении.

В диаграмму последовательности на рис. 4 введен ряд новых элементов. Во-первых, это активизации, появляющиеся явно в том случае, когда метод становится активным либо во время его выполнения, либо при ожидании ре­зультата выполнения какой-либо процедуры. Во-вторых, половинные стрелки обозначают асинхронные сообщения. Асинхронное сообщение не блокирует работу вызывающего объекта. Таким образом, он может продолжать свой соб­ственный процесс. Асинхронное сообщение может выполнять одну из трех функций:

  • создавать новую ветвь процесса (в этом случае оно связано с самой верх­ней частью активизации);
  • создавать новый объект;
  • устанавливать связь с уже выполняющейся ветвью процесса.

Удаление объекта показано с помощью большого знака "X". Объекты мо­гут выполнить самоуничтожение или могут быть уничтожены посредством еще одного сообщения.

Используя механизм активизации, можно более четко показать смысл само делегирования. Без них, или без такого обозначения с помощью столбиков, ко­торое здесь используется, довольно трудно определить, где же выполняются следующие после само делегирования вызовы — то ли в вызывающем методе, то ли в вызываемом методе. Активизации вносят ясность в этот вопрос.

Глава IIIПример использования объектно-ориентированного подхода

В качестве предметной области, как и в главе 2, рассматривается работа подразделения учета налогоплательщиков-организаций.

На начальной стадии (или стадии формирования требований) стро­ится на­чальная диаграмма вариантов использования (рис.5).

Рис.5 Начальная диаграмма вариантов использования

При построении диаграммы вариантов использования в первую Очередь составляется список всех основных действующих лиц (физических лиц или внешних систем, которые будут взаимодействовать с создаваемой системой). Их можно идентифицировать, задавая следующие вопросы:

  • Кто использует систему непосредственно?
  • Кто отвечает за эксплуатацию системы?
  • Какое внешнее оборудование используется системой?
  • Какие другие системы взаимодействуют с данной системой?

Варианты использования идентифицируются исходя из следующих сооб­ражений: каждый вариант использования представляет собой некоторую функцию, выполняемую системой в ответ на воздействие действующего лица, и характеризует конкретный способ применения системы, диалог между действующим лицом и системой. Нужно также иметь в виду, что впоследствии варианты использования будут служить для описания требований к системе, общения с конечными пользователями и экспериментами предметной области, а также для тестирования системы.

На стадии проектирования уточняется диаграмма вариантов использова­ния и строится архитектура системы, основой которой являются диаграммы классов. В данном примере ограничимся построением диаграммы классов и диаграммы взаимодействия. Диаграммы взаимодействия строятся для уточне­ния диаграммы вариантов использования и перехода к диаграммам классов. Так, диаграмма последовательности (рис. 6) иллюстрирует один из возможных сценариев развития событий в рамках варианта использования "Зарегистриро­вать налогоплательщика". Предполагается, что налогоплательщик ставится на учет впервые и все его документы в полном порядке.

Структура программной системы описывается с помощью не­скольких диа­грамм классов, главная из которых представляет собой диаграмму пакетов (по­добную диаграммам, представленным в приложении рис. 8 и 9), а остальные диаграммы раскрывают содержимое каждого из пакетов. При построении диаграммы классов предметной области выделение этих классов (классов-сущностей) может быть аналогично выделению сущностей в процессе моделирования данных. Данные классы должны иметь концептуальный характер и отвечать на вопрос "что?", а не "как?". Начальный список может быть составлен следующим образом:

• в описании исходных данных выделяются кандидаты в классы-существительные, которые потенциально могут соответствовать классам (при этом следует помнить, что существительные могут также относиться к объектам, ассо­циациям или атрибутам классов);

Рис. 6 Диаграмма последовательности для варианта использования "Зарегистрировать нало­гоплательщика"

• анализируются роли кандидатов в системе. Каждый класс должен выполнять некоторые действия и взаимодействовать с другими классами. Каждый класс должен иметь уникальное имя, отражающее характер абстракции, пред­ставляемой данным классом. Если классу трудно придумать краткое и содержа­тельное имя, то это является характерным признаком неудачного выделения класса. Рассматривается каждая возможная пара классов и устанавливается существование ассоциации между ними (по аналогии с установлением связей между сущностями в процессе моделирования данных). Присваиваются наименования ролям ассоциаций, и определяется их множественность.