ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 19.07.2020

Просмотров: 415

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Таким образом, траектория движения точки К1 определена прямой К1О1, точка О -центр окружности - траектории движения точки К. Чтобы найти радиус этой окружности найдем методом треугольника натуральную величину отрезка КО .Продолжим прямую К1О1 так чтобы |КО|=|О1К*1| . Точка К*1 соответствует точке К , когда прямые а и в лежат в плоскости параллельной П1 и проведенной через горизонталь - ось вращения. С учетом этого через точку К*1 и точки А1 и В1 проведем прямые, которые лежат теперь в плоскости параллельной П1, а следовательно и угол j - натуральная величина угла между прямыми а и в.


Метод замены плоскостей проекций


Изменение взаимного положения проецируемой фигуры и плоскостей проекций методом перемены плоскостей проекций, достигается путем замены плоскостей П1 и П2 новыми плоскостями П4 (рис. 4.6). Новые плоскости выбираются перпендикулярно старым. Некоторые преобразования проекций требуют двойной замены плоскостей проекций (рис.36). Последовательный переход от одной системы плоскостей проекций другой необходимо осуществлять, выполняя следующее правило: расстояние от новой проекции точки до новой оси должно равняться расстоянию от заменяемой проекции точки до заменяемой оси.


Задача 1: Определить натуральную величину отрезка АВ прямой общего положений (рис.36). Из свойства параллельного проецирования известно, что отрезок проецируется на плоскость в натуральную величину, если он параллелен этой плоскости.


Выберем новую плоскость проекций П4, параллельно отрезку АВ и перпендикулярно плоскости П1. Введением новой плоскости, переходим из системы плоскостей П1П2 в систему П1П4 , причем в новой системе плоскостей проекция отрезка А4 В4 будет натуральной величиной отрезка АВ.


Рисунок 36. Определение натуральной величины отрезка прямой методом замены плоскостей проекций












Задача 2: Определить расстояние от точки А до прямой общего положения, заданной отрезком АВ (рис.37).

Рисунок 37. Определение расстояния от точки до прямой общего положения методом замены плоскостей проекций


Плоскость

Плоскость – одно из основных понятий геометрии. При систематическом изложении геометрии понятие плоскость обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется аксиомами геометрии. Некоторые характеристические свойства плоскости:

1. Плоскость есть поверхность, содержащая полностью каждую прямую, соединяющую любые ее точки;

2. Плоскость есть множество точек, равноотстоящих от двух заданных точек.

Способы графического задания плоскостей

Положение плоскости в пространстве можно определить:

  1. Тремя точками, не лежащими на одной прямой линии (рис.38);


Рис. 38. Плоскость заданная тремя точками, не лежащими на одной прямой



  1. Прямой линией и точкой, не принадлежащей этой прямой (рис.39);


Рис. 39. Плоскость заданная прямой линией и точкой, не принадлежащей этой линии


  1. Двумя пересекающимися прямыми (рис.40);

Рисунок 40. Плоскость заданная двумя пересекающимися прямыми линиями


  1. Двумя параллельными прямыми (рис.41)

Рис. 41. Плоскость заданная двумя параллельными прямыми линиями

5. О положении плоскости относительно плоскостей проекций удобно судить по её следам (рис.42)..


Следом плоскости называется прямая линия по которой плоскость пересекается с плоскостью проекций. В зависимости от того, какую плоскость проекций пересекает данная a плоскость различают горизонтальный aП1, фронтальный aП2 и профильный aП3 следы.

Рисунок 42. Плоскость заданная следами


Различное положение плоскости относительно

плоскостей проекций



В зависимости от положения плоскости по отношению к плоскостям проекций она может занимать как общее, так и частные положения.


1. Плоскость не перпендикулярная ни одной плоскости проекций называется плоскостью общего положения. Такая плоскость пересекает все плоскости проекций (имеет три следа: - горизонтальный aП1; - фронтальный aП2; - профильный aП3).


Следы плоскости общего положения пересекаются попарно на осях в точках ax,ay,az. Эти точки называются точками схода следов, их можно рассматривать как вершины трехгранных углов, образованных данной плоскостью с двумя из трех плоскостей проекций.


Каждый из следов плоскости совпадает со своей одноименной проекцией, а две другие разноименные проекции лежат на осях (рис.42).


2.Плоскости перпендикулярные плоскостям проекций – занимают частное положение в пространстве и называются проецирующими. В зависимости от того, какой плоскости проекций перпендикулярна заданная плоскость, различают:


2.1. Плоскость перпендикулярная горизонтальной плоскости проекций (a^P1), называется горизонтально проецирующей плоскостью. Горизонтальная проекция такой плоскости представляет собой прямую линию, которая одновременно является её горизонтальным следом. Горизонтальные проекции всех точек любых фигур в этой плоскости совпадают с горизонтальным следом (рис.43).

Рис. 43. Горизонтально проецирующая плоскость


2.2. Плоскость перпендикулярная фронтальной плоскости проекций (a^П2)- фронтально проецирующая плоскость. Фронтальной проекцией плоскости a является прямая линия, совпадающая со следом aП2 (рис.44).

Рисунок 44. Фронтально проецирующая плоскость


2.3. Плоскость перпендикулярная профильной плоскости (a^П3) - профильно проецирующая плоскость. Частным случаем такой плоскости является биссекторная плоскость (рис.45).

Рисунок 45. Биссекторная плоскость


3. Плоскости параллельные плоскостям проекций – занимают частное положение в пространстве и называются плоскостями уровня. В зависимости от того, какой плоскости параллельны исследуемая плоскость, различают:



3.1. Горизонтальная плоскость - плоскость параллельная горизонтальной плоскости проекций (a//П1) - (a^П2,a^П3). Любая фигура в этой плоскости проецируется на плоскость П1 без искажения, а на плоскости П2 и П3 в прямые - следы плоскости aП2 и aП3 (рис.46).

Рисунок 46. Горизонтальная плоскость


3.2. Фронтальная плоскость - плоскость параллельная фронтальной плоскости проекций (a//П2), (a^П1, a^П3). Любая фигура в этой плоскости проецируется на плоскость П2 без искажения, а на плоскости П1 и П3 в прямые - следы плоскости aП1 и aП3 (рис.47).

Рисунок 47. Фронтальная плоскость


3.3. Профильная плоскость - плоскость параллельная профильной плоскости проекций (a//П3), (a^П1, a^П2). Любая фигура в этой плоскости проецируется на плоскость П3 без искажения, а на плоскости П1 и П2 в прямые - следы плоскости aП1 и aП2 (рис.48).


Рисунок 48. Профильная плоскость


Следы плоскости


Следом плоскости называется линия пересечения плоскости с плоскостями проекций. В зависимости от того с какой из плоскостей проекций пересекается данная, различают: горизонтальный, фронтальный и профильный следы плоскости.


Каждый след плоскости является прямой линией, для построения которых необходимо знать две точки, либо одну точку и направление прямой ( как для построения любой прямой). На рис. 49 показано нахождение следов плоскости α(АВС). Фронтальный след плоскости αП2, построен, как прямая соединяющая две точки N(АС) и N(АВ), являющиеся фронтальными следами соответствующих прямых, принадлежащих плоскости α. Горизонтальный след αП1 – прямая, проходящая через горизонтальные следы прямых ВС и АВ. Профильный след αП3 – прямая соединяющая точки (αy и αz) пересечения горизонтального и фронтального следов с осями.


Рис. 49. Построение следов плоскости







Взаимное расположение прямой и плоскости



Определение взаимного положения прямой и плоскости - позиционная задача, для решения которой применяется метод вспомогательных секущих плоскостей. Сущность метода заключается в следующем: через прямую проведем вспомогательную секущую плоскость g и установим относительное положение двух прямых а и в, последняя из которых является линией пересечения вспомогательной секущей плоскости g и данной плоскости a (рис.50).

Рисунок 50. Метод вспомогательных секущих плоскостей


Каждому из трех возможных случаев относительного расположения этих прямых соответствует аналогичный случай взаимного расположения прямой и плоскости. Так, если обе прямые совпадают, то прямая а лежит в плоскости a, параллельность прямых укажет на параллельность прямой и плоскости и, наконец, пересечение прямых соответствует случаю когда прямая а пересекает плоскость a.

Таким образом возможны три случая относительного расположения прямой и плоскости:

  • Прямая принадлежит плоскости;

  • Прямая параллельна плоскости;

  • Прямая пересекает плоскость, частный случай – прямая перпендикулярна плоскости.


Рассмотрим каждый случай.

Прямая линия, принадлежащая плоскости


Аксиома 1. Прямая принадлежит плоскости, если две её точки принадлежат той же плоскости (рис.51).

Рис. 51. Прямая и плоскость имеют две общие точки


Задача. Дана плоскость (n,k) и одна проекция прямой m2.


Требуется найти недостающие проекции прямой m если известно, что она принадлежит плоскости, заданной пересекающимися прямыми n и k.


Проекция прямой m2 пересекает прямые n и k в точках В2 и С2, для нахождения недостающих проекций прямой необходимо найти недостающие проекции точек В и С как точек лежащих на прямых соответственно n и k.

Таким образом точки В и С принадлежат плоскости заданной пересекающимися прямыми n и k, а прямая m проходит через эти точки, значит согласно аксиоме прямая принадлежит этой плоскости.


Аксиома 2. Прямая принадлежит плоскости, если имеет с плоскостью одну общую точку и параллельна какой-либо прямой расположенной в этой плоскости (рис.52).

Рис. 52. Прямая имеет с плоскостью одну общую точку и параллельна прямой расположенной в этой плоскости


Задача.

Через точку В провести прямую m если известно, что она принадлежит плоскости заданной пересекающимися прямыми n и k.


Пусть В принадлежит прямой n лежащей в плоскости заданной пересекающимися прямыми n и k. Через проекцию В2 проведем проекцию прямой m2 параллельно прямой k2, для нахождения недостающих проекций прямой необходимо построить проекцию точки В1, как точки лежащей на проекции прямой n1 и через неё провести проекцию прямой m1 параллельно проекции k1.


Таким образом точки В принадлежат плоскости заданной пересекающимися прямыми n и k, а прямая m проходит через эту точку и параллельна прямой k, значит согласно аксиоме прямая принадлежит этой плоскости.


Главные линии в плоскости

Среди прямых линий, принадлежащих плоскости, особое место занимают прямые, занимающие частное положение в пространстве:


1. Горизонтали h - прямые, лежащие в данной плоскости и параллельные горизонтальной плоскости проекций (hÎАВС, h//P1, h2//Ох,h3//Оy)(рис.53).




Рис 53. Горизонталь


2. Фронтали f - прямые, расположенные в плоскости и параллельные фронтальной плоскости проекций (fÎАВС, f//P2, f1//Ох, f3//Оz)(рис.54).


Рис. 54. Фронталь

3. Профильные прямые р - прямые, которые находятся в данной плоскости и параллельны профильной плоскости проекций (рÎАВС, р//P3, р1^Ох, р2^Ох) (рис.55).

Рисунок 55. Профильная прямая



Следует заметить, что следы плоскости можно отнести тоже к главным линиям. Горизонтальный след - это горизонталь плоскости, фронтальный - фронталь и профильный - профильная линия плоскости.


4. Линия наибольшего ската и её горизонтальная проекция образуют линейный угол j , которым измеряется двугранный угол, составленный данной плоскостью и горизонтальной плоскостью проекций (рис.56).



Рис. 56. Линия наибольшего ската



Прямая линия, параллельная плоскости

При решении вопроса о параллельности прямой линии и плоскости необходимо опираться на известное положение стереометрии: прямая параллельна плоскости, если она параллельна одной из прямых, лежащих в этой плоскости и не принадлежит этой плоскости.


Задача. Дано: проекции плоскости общего положения ABC и прямой общего положения а.


Требуется оценить их взаимное положение (рис.57).

Рис. 57. Прямая параллельная плоскости


Для этого через прямую а проведем вспомогательную секущую плоскость g - в данном случае горизонтально проецирующая плоскость. Найдем линию пересечения плоскостей g и АВС- прямую п (DF). Проекция прямой п на горизонтальную плоскость проекций совпадает с проекцией а1 и со следом плоскости g. Проекция прямой п2 параллельна а2, п3 параллельна а3, следовательно, прямая а параллельна плоскости AВС.


Прямая линия, пересекающая плоскость


Нахождение точки пересечения прямой линии и плоскости – основная задача начертательной геометрии.


Задача. Дано: плоскость AВС и прямая а.


Требуется найти точку пересечения прямой с плоскостью и определить видимость прямой по отношению к плоскости.


Для решения задачи:

Через горизонтальную проекцию прямой а1 проведем вспомогательную горизонтально проецирующую плоскость g (таким образом а Î g).


Горизонтальный след плоскости g1 пересекает проекцию плоскости A1В1С1 в точках D1 и F1, которые определяют положение горизонтальной проекции п1- линии пересечения плоскостей g и AВС. Для нахождения фронтальной и профильной проекции п спроецируем точки D и F на фронтальную и профильную плоскости проекций.


На фронтальной и профильной проекциях линия пересечения плоскостей п пересекает проекции а в точке К, которая и является проекцией точки пересечения прямой а с плоскостью AВС, по линии связи находим горизонтальную проекцию К1.


Методом конкурирующих точек определяем видимость прямой а по отношению к плоскости AВС.

Рисунок 58. Нахождение точки пересечения прямой и плоскости

Таким образом алгоритм решения задачи состоит из следующей последовательности действий (рис.58):


1. Построение вспомогательной секущей плоскости g ( горизонтально – проецирующая плоскость ), которую проводят через прямую а (аÎg);


2. Построение линии пересечения вспомогательной плоскости g и заданной плоскости a (п=aÇg);

3. Определение искомой точки К, как точки пересечения двух прямых, заданной - а и полученной в результате пересечения плоскостей – п (К=а Ç п). В качестве вспомогательной плоскости g рекомендуется брать одну из проецирующих плоскостей.

  1. Определение видимости прямой а относительно плоскости a.


Прямая линия перпендикулярная плоскости.


Докажем следующую теорему о перпендикуляре к плоскости: Если прямая перпендикулярна плоскости, то горизонтальная проекция этой прямой перпендикулярна горизонтальной проекции горизонтали плоскости, а фронтальная проекция – фронтальной проекции фронтали плоскости.