ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 09.09.2020
Просмотров: 1284
Скачиваний: 4
Ветряные генераторы практически не потребляют ископаемого топлива. Работа ветрогенератора мощностью 1 МВт за 20 лет эксплуатации позволяет сэкономить примерно 29 тыс. тонн угля или 92 тыс. баррелей нефти.
Энергия приливов и отливов. Электростанциями этого типа являются особого вида гидроэлектростанции, использующие энергию приливов, а фактически кинетическую энергию вращения Земли. Приливные электростанции строят на берегах морей, где гравитационные силы Луны и Солнца дважды в сутки изменяют уровень воды.
Для получения энергии залив или устье реки перекрывают плотиной, в которой установлены гидроагрегаты, которые могут работать как в режиме генератора, так и в режиме насоса (для перекачки воды в водохранилище для последующей работы в отсутствие приливов и отливов). В последнем случае они называются гидроакумулирующая электростанция.
Преимуществами ПЭС является экологичность и низкая себестоимость производства энергии. Недостатками — высокая стоимость строительства и изменяющаяся в течение суток мощность, из-за чего ПЭС может работать только в единой энергосистеме с другими типами электростанций.
Энергия волн. Волновые электростанции используют потенциальную энергию волн переносимую на поверхности океана. Мощность волнения оценивается в кВт/м. По сравнению с ветровой и солнечной энергией энергия волн обладает большей удельной мощностью. Несмотря на схожую природу с энергией приливов, отливов и океанских течений волновая энергия представляет собой отличный от них источник возобновляемой энергии.
Геотермальная энергия. Электростанции данного типа представляют собой теплоэлектростанции использующие в качестве теплоносителя воду из горячих геотермальных источников. В связи с отсутствием необходимости нагрева воды ГеоТЭС являются в значительной степени более экологически чистыми нежели ТЭС. Строятся ГеоТЭС в вулканических районах, где на относительно небольших глубинах вода перегревается выше температуры кипения и просачивается к поверхности, иногда проявляясь в виде гейзеров. Доступ к подземным источникам осуществляется бурением скважин.
33. Особенности географии нефтяной и газовой промышленности. Территориальное распределение мировых запасов, добычи и переработки нефти, география потребления нефти.
Угольная промышленность развивается на базе угольных ресурсов. Угольные ресурсы дифференцируются по разным признакам, среди которых прежде выделяют глубину залегания, степень метаморфизма и характер географического распространения. Технико-экономические показатели добычи угля, как нефти и газа, во многом зависят от глубины разработки. Роль угольного бассейна в территориальном разделении труда зависит от количества и качества ресурсов, уровня их готовности для промышленной эксплуатации, размеров добычи, особенностей транспортно-географического положения и др. Угольные бассейны местного значения имеют локальный характер, ограничиваясь рамками отдельных районов. Освоения угольных ресурсов в районах, доступных для открытой добычи, создает благоприятные предпосылки для мощных топливно-энергетических баз как основы промышленных комплексов, специализирующихся на энергоемких производствах. С развитием угольной промышленности связаны черная металлургия, электроэнергетика, коксохимия и другие отрасли хозяйства.
Нефтедобывающая промышленность ориентируется на нефтяные месторождения суши и континентального шельфа. Нефтеперерабатывающая промышленность размещается вблизи нефтепромыслов, в портах ввоза сырой нефти или на трассах магистральных нефтепроводов.
Газовая промышленность развивается на базе газовых месторождений.
Для развития угольной, нефтяной и газовой промышленности необходимое оборудование, его производят различные отрасли машиностроения (тяжелое машиностроение производит горношахтное оборудование для угольных шахт, отдельные отрасли выпускают оборудование для нефтедобывающей, нефтеперерабатывающей и газовой промышленности). На основе районов добычи топливных ресурсов возникают населенные пункты. Развитие топливной промышленности требует определенного количества трудовых ресурсов.
КАРТА
34. Угольная промышленность. Мировые угольные ресурсы, виды и качественный состав углей. География добычи, потребления и торговля угля.
Геологические закономерности распределения угленосности на земном шаре. Непрерывный процесс изменения земной коры, вызванный влиянием как глубинных процессов, так и атмосферы, гидросферы и других факторов, определил существенные различия строения, форм и состава отдельных ее частей. В течение очень длительного времени при определенных условиях на различных этапах развития земной коры образовались многие месторождения разных полезных ископаемых и среди них такие важные для современной жизни человечества, как месторождения горючих полезных ископаемых – угля, нефти, газа, горючих сланцев, торфа. Для образования месторождений торфа, угля и горючих сланцев было необходимо сочетание определенных климатических, палеогеографических и тектонических условий, при которых стали возможными возникновение и развитие органического (преимущественно растительного) мира, его территориальное распространение и произрастание, а также последующее отмирание, скопление достаточно больших масс, захоронение и превращение в полезное ископаемое.
Тектонические причины привели к возникновению бассейнов, где накапливались осадочные породы и растительный материал, из которого образовался уголь. Впоследствии эти причины обусловили формирование структур бассейнов и их современное размещение в земной коре. Тектонические закономерности являются важнейшим фактором образования угольных месторождений.
Непрекращающиеся изменения лика Земли приводили не только к образованию месторождений, но и к их разрушению, в том числе месторождений угля. В настоящее время в ряде случаев можно наблюдать лишь части угленосных бассейнов и месторождений, уцелевших от размыва, выветривания, химического изменения углей и вмещающих пород.
Геологическая история формирования, а также разрушения месторождений твердых
горючих ископаемых отличается многообразием сложных природных процессов, которые связаны с длительными по времени периодами развития Земли. Научные исследования позволили ученым установить ряд важных закономерностей угленакопления и размещения твердых горючих ископаемых.
Академик П.И. Степанов еще в 1937 г. установил, что в осадочной оболочке земной коры начиная с девона, когда появились первые крупные скопления углей, представляющие промышленный интерес, выделяются три максимума и три минимума угленакопления.
Первый максимум совпадает с верхним карбоном и пермью. Количество запасов угля, подсчитанное на тот период для этой части стратиграфического разреза, составляет 38,1% общего количества мировых запасов угля во всех горизонтах. Второй максимум угленакопления приурочен к отложениям юрского возраста (4% мировых запасов угля). Третий максимум приходится на верхнюю часть верхнемелового периода и третичный период – здесь сосредоточено 54,4% запасов угля.
Общие геологические запасы углей земного шара до глубины 1800 м оцениваются в пределах 12000–23000 млрд. т. Величина запасов, исключая экстремальные и недостаточно надежные оценки, определяется в 14000–16000 млрд. т. Расхождения в оценках обусловлены различными нормативами, принимаемыми при подсчетах (глубина подсчета, минимальная мощность пластов, предельное качество угля и др.), неидентичностью методов прогнозирования и требований, предъявляемых к достоверности запасов в различных странах.
По официальным национальным данным общие геологические запасы углей, содержащихся в угленосных формациях всех геологических систем по состоянию на 1980 г., оценивались в 14311 млрд. т.
По общим геологическим запасам углей первые десять мест без учета запасов бассейна Алта-Амазона в Бразилии (2200 млрд. т) занимают (в скобках указаны запасы,млрд. т): СНГ (6800), США (3600), КНР (1500), Австралия (697), Канада (547), ФРГ (287), ЮАР (206), Великобритания (189), Польша (174), Индия (125). В указанных странах сосредоточено 96,7% общих геологических запасов мира и 88% его добычи.
КАРТА
35. Электроэнергетика. Мировая выработка электроэнергии и темпы ее роста.
Электроэнергетика входит в состав топливно-энергетического комплекса, образуя в нем, как иногда говорят, «верхний этаж». Можно сказать, что она является одной из базовых отраслей мирового хозяйства. Эта ее роль объясняется необходимостью электрификации самых разных сфер человеческой деятельности. Поэтому и уровень электрификации топливно-энергетического баланса мира, который измеряется количеством первичных энергоресурсов, расходуемых на производство электроэнергии, все время возрастает и в развитых странах уже превысил 2/5.
Динамика мирового производства электроэнергии показана на рисунке 72, из которого вытекает, что во второй половине XX в. – начале XXI в. выработка электроэнергии увеличилась в 20 раз. На протяжении всего этого времени темпы роста спроса на электроэнергию превышали темпы роста спроса на первичные энергоресурсы. В первой половине 1990-х гг. они составляли соответственно 2,5 % и 1,5 % в год.
Согласно прогнозам, к 2010 г. мировое потребление электроэнергии может возрасти до 18–19 трлн кВт ч, а к 2020 г. – до 26–27 трлн кВт • ч. Соответственно будут возрастать и установленные мощности электростанций мира, которые уже в середине 1990-х гг. превысили уровень в 3 млрд кВт.
Между тремя основными группами стран выработка электроэнергии распределяется следующим образом: на долю экономически развитых стран приходится 55 %, развивающихся – 35 и стран с переходной экономикой – 10 %. Предполагают, что доля развивающихся стран в перспективе будет возрастать, и к 2020 г. они обеспечат уже около 1/2 мировой выработки электроэнергии.
Распределение мирового производства электроэнергии между крупными географическими регионами также постепенно изменяется. Так, в 1950 г. на долю Северной Америки приходилось 46 %, Западной Европы – 25, Восточной Европы (с СССР) – 14, Азии – 10, Латинской Америки, Австралии и Океании – по 2 и Африки – 1 %. К 2005 г. доля Северной Америки уменьшилась до 26 %, Западной Европы – до 20, Восточной Европы (с СНГ) – до 11, тогда как доля Азии возросла до 34, Латинской Америки – до 5, Африки– почти до 3 %, доля Австралии и Океании осталась неизменной. Судя по прогнозам, в 2010 г. потребление электроэнергии в Северной Америке и Азиатско-Тихоокеанском регионе сравняется на уровне около 6 трлн кВт ч. В Западной Европе оно составит 2800 млрд кВт • ч, в Латинской Америке – 1350 млрд, в Африке – 550 млрд, на Ближнем и Среднем Востоке – 350 млрд кВт • ч.
Такой порядок регионов в известной мере предопределяет и состав главных стран – производителей электроэнергии (табл. 94).
Анализируя таблицу 94, нетрудно заметить, что из 18 вошедших в нее стран 14 относятся к экономически развитым и 4 – к развивающимся. В целом состав этой группы уже на протяжении длительного времени остается более или менее устойчивым, но число стран в ней постепенно возрастает. Еще в 1985 г. их было всего 11, причем в первую пятерку входили тогда США, СССР, Япония, Канада и Китай. Согласно одному из прогнозов, в 2020 г. производство электроэнергии в США достигнет 4350 млрд кВт ч, в Китае – 3450 млрд, В России – 180 млрд, в Индии – 1150 млрд, а в странах ЕС в целом – 2115 млрд кВт-ч. Но некоторые из этих показателей уже устарели.