Файл: Биология. Ответы.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 30.09.2020

Просмотров: 1419

Скачиваний: 4

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Полное доминирование — взаимодействие двух аллелей одного гена, когда доминантный аллель полностью исключает проявление действия второго аллеля. В фенотипе присутствует только признак, задаваемый доминантной аллелью. Например, в экспериментах Менделя пурпурная окраска цветка полностью доминировала над белой.

Неполное доминирование — доминантный аллель в гетерозиготном состоянии не полностью подавляет действие рецессивного аллеля. Гетерозиготы имеют промежуточный характер признака. Например, если в гомозиготном состоянии один аллель определяет красную окраску цветка, а другой — белую, то гетерозиготный гибрид будет иметь розовые цветки. В некоторых источниках неполное доминирование характеризуют как такой тип взаимодействия аллелей, когда признак у гибридов F1 занимает не среднее положение, а отклоняется в сторону родителя с доминирующим признаком. Полностью же средний вариант (как, например, приведённый выше пример наследования окраски цветков) относят к промежуточному характеру наследования, то есть отсутствию доминирования.

Сверхдоминирование — более сильное проявление признака у гетерозиготной особи, чем у любой гомозиготной. На этом типе аллельного взаимодействия основано явление гетерозиса (превосходство над родителями по жизнеспособности, энергии роста, плодовитости, продуктивности).

Кодоминирование — проявление у гибридов нового варианта признака, обусловленного взаимодействием двух разных аллелей одного гена. При этом, в отличие от неполного доминирования, оба аллеля проявляются в полной мере. Наиболее известным примером является наследование групп крови у человека. Некоторые источники также понимают именно под кодоминированием отсутствие доминантно-рецессивных отношений.

Доминирование, связанное с полом происходит тогда, когда одна и та же аллель у самцов проявляется как доминантная, а у самок — как рецессивная. Например, у овцематок доминирует комолость (R), а у баранов — рогатость (R1).

Другие типы алелльных взаимодействий

Межаллельная комплементация — довольно редкое взаимодействие аллелей. Она имеет место в том случае, когда возможно формирование нормального признака D у организма, гетерозиготного по двум мутантным аллелям D1D2.

Аллельное исключение происходит при инактивации одной из Х-хромосом у особей гомогаметного пола, приводящего в соответствие дозы Х-генов у всех представителей пола (к примеру, у женщин в каждой клетке экспрессируется лишь одна Х-хромосома, другая же переходит в неактивный гетерохроматин (т.н. тельце Барра). Таким образом, женский организм у человека является мозаичным, т.к. в разных клетках могут экспрессироваться разные хромосомы). При этом проявляются только аллели, находящиеся в активной Х-хромосоме, те же аллели, которые находятся в инактивированной, как бы исключаются и не проявляются в фенотипе. При этом в каждой клетке экспрессируется или один, или другой аллель, в зависимости от того, какая Х-хромосома была инактивирована.


Множественным аллелизмом называют явление существование в популяции более двух аллелей данного гена. Одним из наиболее известных проявлений множественного аллелизма является наследование групп крови у человека. Множественный аллелизм широко распространён в природе. Так, по этому механизму определяется тип совместимости при опылении у высших растений, типы спаривания у грибов, окраска шерсти у животных, цвет глаз у дрозофилы, форма рисунка на листьях белого клевера. Кроме того, у растений, животных и микроорганизмов имеются аллозимы — белковые молекулы, различия между которыми определяются аллелями одного гена.

Летальными называются аллели, носители которых погибают из-за нарушений развития или заболеваний, связанных с работой данного гена. Эти аллели возникают тогда, когда нормальная работа гена нарушается из-за мутации, произошедшей в некоторой его аллели. Летальное действие таких аллелей может проявляться как в эмбриональном, так и постэмбриональном периоде жизни организма. Примером летальной аллели, из-за которой организм погибает на стадии эмбриона, является летальная аллель Y гена, участвующего в определении окраски шерсти у мышей. В качестве летальной аллели, чьё действие проявляется во взрослом возрасте, может быть рассмотрена доминантная аллель, ответственная за развитие хореи Гентингтона у человека.

18. Неаллельное взаимодействие генов

Неаллельные гены — это гены, расположенные в различных участках хромосом и кодирующие неодинаковые белки.

Выделяют три формы и взаимодействия неаллельных генов:

  • комплементарность;

  • эпистаз;

  • полимерия.

Комплементарность — это вид взаимодействия неаллельных генов, доминантные аллели которых при совместном сочетании в генотипе обусловливают новое фенотипическое проявление признаков. При этом расщепление гибридов F2 по фенотипу может происходить в соотношениях 9:6:1, 9:3:4, 9:7, иногда 9:3:3:1.

Примером комплементарности является наследование формы плода тыквы. Наличие в генотипе доминантных генов А или В обусловливает сферическую форму плодов, а рецессивных — удлинённую. При наличии в генотипе одновременно доминантных генов А и В форма плода будет дисковидной. При скрещивании чистых линий с сортами, имеющими сферическую форму плодов, в первом гибридном поколении F1 все плоды будут иметь дисковидную форму, а в поколении F2 произойдёт расщепление по фенотипу: из каждых 16 растений 9 будут иметь дисковидные плоды, 6 — сферические и 1 — удлинённые.

Эпистаз - подавление действия одной аллельной пары генов геном другой, не аллельной им пары. Различают доминантный и рецессивный эпистаз. Если обычное аллельное доминирование можно представить в виде формулы А>а, То явление эпистаза выразится формулой А>В (доминантный эпистаз) или А>В (рецессивный эпистаз), когда доминантный или рецессивный ген одной аллельной пары не допускает проявления генов другой аллельной пары.


Гены, подавляющие действие других, не аллельных им генов, называются эпистатичными, А подавляемые — гипостатичными. Эпистатическое взаимодействие генов по своему характеру противоположно комплементарному взаимодействию. При эпистазе фермент, образующийся под контролем одного гена, полностью подавляет или нейтрализует действие фермента, контролируемого другим геном.

Полимерия — взаимодействие неаллельных множественных генов, однонаправленно влияющих на развитие одного и того же признака; степень проявления признака зависит от количества генов. Полимерные гены обозначаются одинаковыми буквами, а аллели одного локуса имеют одинаковый нижний индекс.

Полимерное взаимодействие неаллельных генов может быть кумулятивным и некумулятивным. При кумулятивной (накопительной) полимерии степень проявления признака зависит от суммарного действия нескольких генов. Чем больше доминантных аллелей генов, тем сильнее выражен тот или иной признак. Расщепление в F2 по фенотипу при дигибридном скрещивании происходит в соотношении 1:4:6:4:1, а в целом соответствует третьей, пятой (при дигибридном скрещивании), седьмой (при тригибридном скрещивании) и т.п. строчкам в треугольнике Паскаля.

При некумулятивной полимерии признак проявляется при наличии хотя бы одного из доминантных аллелей полимерных генов. Количество доминантных аллелей не влияет на степень выраженности признака. Расщепление в F2 по фенотипу при дигибридном скрещивании — 15:1.

Пример полимерии — наследование цвета кожи у людей, который зависит (в первом приближении) от четырёх генов с кумулятивным эффектом.

19. Сцепленное наследие

В 1911 —1912 годах Т. Морган и сотрудники проверили проявление третьего закона Менделя на мухах-дрозофилах. Они учитывали две пары альтернативных признаков: серый (В) и черный (b) цвет тела и нормальные (V) и короткие (v) крылья. При скрещивании гомозиготных особей с серым цветом тела и нормальными крыльями с мухами с черным цветом тела и короткими крыльями получили единообразие гибридов первого поколения — мух с серым телом и нормальными крыльями. Подтвердился I закон Менделя.

Далее Морган решил провести анализирующее скрещивание гибридов первого поколения. Рецессивную гомозиготную самку он скрестил с дигетерозиготным самцом.

Морган ожидал получить, согласно третьему закону Менделя, мух четырех разных фенотипов в равном количестве (по 25%), а получил двух фенотипов (по 50% каждого). Морган пришел к выводу, что поскольку у организмов генов много, а хромосом относительно мало, то, следовательно, в каждой хромосоме содержится большое количество генов, и гены, локализованные в одной хромосоме, передаются вместе (сцепленно). Цитологические основы этого явления можно пояснить следующей схемой (рис. 1). Одна из пары гомологичных хромосом содержит два доминантных гена (BV), а другая — два рецессивных (bv). При мейозе хромосома с генами BV попадет в одну гамету, а хромосома с генами bv в другую.


Рис. 1. Схема расхождения гомологичных хромосом в мейозе при полном сцеплении.

Таким образом, у дигетерозиготного организма образуются не четыре типа гамет (когда гены расположены в разных хромосомах), а только два, и, следовательно, потомки будут иметь два сочетания признаков (как у родителей).

Гены, локализованные в одной хромосоме, обычно передаются вместе и составляют одну группу сцепления. Так как в гомологичных хромосомах локализованы аллельные гены, то группу сцепления составляют две гомологичные хромосомы, и, следовательно, количество групп сцепления соответствует количеству пар хромосом (или гаплоидному числу хромосом). Так, у мухи-дрозофилы всего 8 хромосом — 4 труппы сцепления, у человека 46 хромосом — 23 группы сцепления.

Если гены, локализованные в одной хромосоме, передаются всегда вместе, то такое сцепление называется полным. Однако при дальнейшем анализе сцепления генов было обнаружено, что в некоторых случаях оно может нарушаться. Если дигетерозиготную самку мухи-дрозофилы скрестить с рецессивным самцом, результат будет следующий:

Морган предполагал получить опять мух четырех фенотипов по 25%, а получил потомков четырех фенотипов, но в другом соотношении: по 41,5% особей с серым телом и нормальными крыльями и с черным телом и короткими крыльями и по 8,5% мух с серым телом и короткими крыльями и с черным телом и нормальными крыльями. В этом случае сцепление генов неполное, т.е. гены, локализованные в одной хромосоме, не всегда передаются вместе. Это связано с явлением кроссинговера, которое заключается в обмене участками гомологичных хроматид в процессе их конъюгации в профазе мейоза I (рис. 2). Кроссинговер у гетерозиготных организмов приводит к перекомбинации генетического материала.

Рис. 2. Схема кроссинговера

Каждая из образовавшихся хроматид попадает в отдельную гамету. Образуются 4 типа гамет, но в отличие от свободного комбинирования их процентное соотношение будет неравным, так как кроссинговер происходит не всегда. Частота кроссииговера зависит от расстояния между генами: чем больше расстояние, тем чаще может происходить кроссинговер. Расстояние между генами определяется в процентах кроссииговера — 1 морганида равна 1 % кроссинговера.

Итак, свободное комбинирование генов, согласно третьему закону Менделя, происходит в том случае, когда исследуемые гены расположены в разных хромосомах. Неполное сцепление наблюдается тогда, когда происходит перекомбинация генов (кроссинговер), расположенных в одной хромосоме. Если гены расположены в одной хромосоме и кроссинговер не происходит, сцепление будет полным. Кроссинговер имеет место у всех растений и животных, за исключением самца мухи-дрозофилы и самки тутового шелкопряда.

Основные положения хромосомной теории наследственности:


гены расположены в хромосомах линейно в определенных локусах (участках); аллельные гены занимают одинаковые локусы в гомологичных хромосомах;

гены гомологичных хромосом образуют группу сцепления; число их равно гаплоидному набору хромосом;

между гомологичными хромосомами возможен обмен аллельными генами (кроссинговер);

расстояние между генами пропорционально проценту кроссииговера и выражается в морганидах.

Пол организма — это совокупность признаков и анатомических структур, обеспечивающих половой путь размножения и передачу наследственной информации.

В определении пола будущей особи ведущую роль играет хромосомный аппарат зиготы — кариотип. Различают хромосомы, одинаковые для обоих полов — аутосомы, и половые хромосомы.

В кариотипе человека содержится 44 аутосомы и 2 половых хромосомы — Х и Y. За развитие женского пола у человека отвечают две Х-хромосомы, т. е. женский пол гомогаметен. Развитие мужского пола определяется наличием Х- и Y-хромосом, т. е. мужской пол гетерогаметен. Сочетание половых хромосом в зиготе определяет пол будущего организма (рис. 3).

Рис. 3. Схема определения пола у человека. Половина сперматозоидов несет X-хромосому, а другая половина — Y-хромосому. Пол ребенка зависит от того, какой сперматозоид оплодотворит яйцеклетку.

У всех млекопитающих, человека и мухи-дрозофилы, гомогаметным является женский пол, а гетерогаметным — мужской. У птиц и бабочек, наоборот, гомогаметен мужской пол, а женский — гетерогаметен.

Признаки, сцепленные с полом

Это признаки, которые кодируются генами, находящимися на половых хромосомах. У человека признаки, кодируемые генами Х-хромосомы, могут проявляться у представителей обоих полов, а кодируемые генами Y-хромосомы — только у мужчин.

Следует иметь в виду, что в мужском генотипе только одна Х-хромосома, которая почти не содержит участков, гомологичных с Y-хромосомой, поэтому все локализованные в Х-хромосоме гены, в том числе и рецессивные, проявляются в фенотипе в первом же поколении.

В половых хромосомах содержатся гены, регулирующие проявление не только половых признаков. Х-хромосома имеет гены, отвечающие за свертываемость крови, цветовое восприятие, синтез ряда ферментов. В Y-хромосоме содержится ряд генов, контролирующих признаки, наследуемые по мужской линии (голандрические признаки): волосистость ушной раковины, наличие кожной перепонки между пальцами и др. Известно очень мало генов, общих для Х- и Y-хромосом.

Различают Х-сцепленное и Y-сцепленное (голандрическое) наследование.

Х-сцепленное наследование

Так как Х-хромосома присутствует в кариотипе каждого человека, то и признаки, наследуемые сцеплено с Х-хромосомой, проявляются у представителей обоих полов. Женщины получают эти гены от обоих родителей и через свои гаметы передают их потомкам. Мужчины получают Х-хромосому от матери и передают ее своему потомству женского пола.