Файл: Биология. Ответы.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 30.09.2020

Просмотров: 1414

Скачиваний: 4

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Трансляция

У прокариот мРНК может считываться рибосомами в аминокислотную последовательность белков сразу после транскрипции, а у эукариот она транспортируется из ядра в цитоплазму, где находятся рибосомы. Скорость синтеза белков выше у прокариот и может достигать 20 аминокислот в секунду[1]. Процесс синтеза белка на основе молекулы мРНК называется трансляцией.

Рибосома содержит 2 функциональных участка для взаимодействия с тРНК: аминоацильный (акцепторный) и пептидильный (донорный). Аминоацил-тРНК попадает в акцепторный участок рибосомы и взаимодействует с образованием водородных связей между триплетами кодона и антикодона. После образования водородных связей система продвигается на 1 кодон и оказывается в донорном участке. Одновременно в освободившемся акцепторном участке оказывается новый кодон, и к нему присоединяется соответствующий аминоацил-т-РНК.

Во время начальной стадии биосинтеза белков, инициации, обычно метиониновый кодон узнаётся малой субъединицей рибосомы, к которой при помощи белковых факторов инициации присоединена метиониновая транспортная РНК (тРНК). После узнавания стартового кодона к малой субъединице присоединяется большая субъединица и начинается вторая стадия трансляции — элонгация. При каждом движении рибосомы от 5' к 3' концу мРНК считывается один кодон путём образования водородных связей между тремя нуклеотидами (кодоном) мРНК и комплементарным ему антикодоном транспортной РНК, к которой присоединена соответствующая аминокислота. Синтез пептидной связи катализируется рибосомальной РНК (рРНК), образующей пептидилтрансферазный центр рибосомы. Рибосомальная РНК катализирует образование пептидной связи между последней аминокислотой растущего пептида и аминокислотой, присоединённой к тРНК, позиционируя атомы азота и углерода в положении, благоприятном для прохождения реакции. Ферменты аминоацил-тРНК-синтетазы присоединяют аминокислоты к их тРНК. Третья и последняя стадия трансляции, терминация, происходит при достижении рибосомой стоп-кодона, после чего белковые факторы терминации гидролизуют последнюю тРНК от белка, прекращая его синтез. Таким образом, в рибосомах белки всегда синтезируются от N- к C-концу.

10. Характеристика покровных тканей растений

Ткани растений – это группы клеток, которые в определенном порядке располагаются в теле растения и предназначены для выполнения различных функций в жизнедеятельности растения. Все многоклеточные организмы имеют клетки различной структуры, совокупности которых являются тканями. Степень дифференцировки клеток тканей растений возрастает от низших растений к высшим. В отличие от тканей животных, у растений процесс образования тканей из первичных клеток можно наблюдать не на зародыше, а в растущих частях тела растения. Первичные клетки растения однородны, имеют примерно равные размеры и пропорции, состоят из протоплазмы и ядра. Из этих клеток формируется первоначальная меристема. Она в свою очередь позднее делится на составляющие: первый внешний слой (протодерм), из которого образуется кожица; срединный слой (прокамбий), являющийся предшественником сосудисто-волокнистых пучков; слой основной меристемы, который находится между протодермом и прокамбием и называется основной паренхимой или основной тканью растений, из нее появляется сердцевина, часть проводящей паренхимы. Это образовательная ткань растений.


О том, как проходит сосудисто-волокнистый пучок, можно судить по нервации листьев. Образуется характерная сеть, причем пучки листьев соединены с пучками стеблей, которые формируют разветвленную систему, переходящую в корень. Это проводящая ткань растения. Если изучать строение этой системы, можно увидеть, что образуется сплошной скелет во всем теле растения. Он состоит из правильно связанных друг с другом пучков, хотя они соединены по-разному у разных растений. Скелет растения из проводящих волокон, по которым перемещаются питательные вещества от листьев к корню и наоборот, представляет собой механическую ткань растения.

У растений формируется практически замкнутое кольцо сосудисто-волокнистых структур, а парехима центральной части ствола тесно связана с паренхимой коры через маленькие «окна» в сосудисто-волокнистом кольце, в которых находятся паренхиматические клетки. В процессе длительного преобразования клеток камбия образуется ряд слоев сосудисто-волокнистых образований. У многих деревьев это внутренний слой (наиболее древний) – первичная древесина, камбий и вторичная кора (паренхима, включающая луб). Под кожицей формируется пробковая ткань растения, основная функция которой – защитная так же, как и кожицы. Таким образом, кожица и пробковая ткань являются покровными тканями растений. Функции покровной ткани растения – предохранение органов растения от высыхания, влияния высоких и низких температур, повреждений и других неблагоприятных факторов внешней среды.

Классификация тканей растений разработана по генетическим и морфологическим признакам. Характеристика тканей растений определяется расположением ткани и выполняемым ею функциям. К системам защиты относися покровная ткань (кожица, корка, пробка) и механическая ткань или система скелета (толстостенный луб, склеренхима, колленхима, либриформ). Система питания включает всасывающую систему (ризоиды, кожица корня, корневые волоски), усвояющую (ассимиляционную) систему (губчатая ткань, хлорофиллоносная паренхима), проводящую ткань (сосудистые пучки, проводящая паренхима, млечные сосуды), накапливающую систему (водоносная ткань, ткань с запасами питательных веществ) и выделительную ткань (железки, хранилища слизей, смол, масла).

Функции тканей растений разнообразны в зависимости от типа ткани растения. Покровная ткань выполняет защитную функцию. Благодаря проводящей ткани, обеспечивается передвижение воды и растворенных в ней питательных веществ внутри растения. Функция механической ткани – обеспечение прочности органов растения. Элементы ткани этого вида формируют каркас для поддержания всех составных частей растения и противодействия любым механическим повреждениям. Как заметно из названия «основная ткань», именно она представляет собой основу органов растения. Основная ткань выполняет множество различных функций. Поэтому выделяют ее подтипы - ассимиляционная, запасающая, воздухоносная и водоносная паренхима. Клетки ассимиляционной ткани ответственны за фотосинтез, в клетках запасающей паренхимы содержатся запасы белков, жиров, углеводов, других веществ. Водоносная паренхима обеспечивает накопление воды. А воздухоносная ткань (аэропаренхима), имеющаяся у водных растений, обеспечивает доставку воздуха к тем частям растения, куда его доступ затруднен.


11. Классификация проводящих тканей растений

Проводящие ткани обеспечивают движение веществ в теле растения.

Сформировались в процессе эволюции после выхода растений на сушу, когда возникло два типа питания: воздушное и почвенное. В связи с этим возникли два типа проводящих тканей: флоэма и ксилема, по которым вещества движутся в противоположных направлениях.

Ксилема и флоэма образуют в теле растения непрерывную разветвленную систему, соединяющую все органы растения. Это сложные ткани, в состав которых входят проводящие, механические, запасающие элементы.

Обычно ксилема и флоэма собраны в проводящие пучки. Если сосудисто-проводящий пучок содержит образовательную ткань и способен к вторичному утолщению, он называется открытым. Закрытые пучки не содержат камбия и не способны к вторичному росту.

В зависимости от взаимного расположения флоэмы и ксилемы различают коллатеральные, биколлатеральные, концентрические и радиальные проводящие пучки.

Основные характеристики проводящих тканей:

Ксилема - отвечает за восходящий транспорт, переносит воду и минеральные соли. Вторичная ксилема называется древесина.

В состав ксилемы входят:

Трахеиды

Сосуды (трахеи)

Древесинные волокна

Древесинная паренхима.

Флоэма - нисходящий транспорт, транспортирует органические вещества (сахарозу). Вторичная флоэма называется луб.

В состав флоэмы входят:

Ситовидные клетки,

Ситовидные трубки с клетками-спутницами

Лубяные волокна

Лубяная паренхима

12. Особенности организации эпителиальных тканей. Классификация.

Эпителий, или эпителиальная ткань — слой клеток, выстилающий поверхность (эпидермис) и полости тела, а также слизистые оболочки внутренних органов, пищевого тракта, дыхательной системы, мочеполовые пути. Кроме того, образует большинство желёз организма.

Клетки эпителия лежат на тонкой базальной мембране, они лишены кровеносных сосудов, их питание осуществляется за счет подлежащей соединительной ткани.

Существуют несколько классификаций эпителиев, в основу которых положены различные признаки: происхождение, строение, функции. Из них наибольшее распространение получила морфологическая классификация, учитывающая главным образом отношение клеток к базальной мембране и их форму.

Морфологическая классификация

Однослойный эпителий может быть однорядным и многорядным. У однорядного эпителия все клетки имеют одинаковую форму — плоскую, кубическую или призматическую, их ядра лежат на одном уровне, то есть в один ряд. У многорядного эпителия различают окрашиваемые гематоксилин-эозином, призматические и вставочные клетки; последние, в свою очередь, делятся по принципу отношения ядра к базальной мембране на высокие вставочные и низкие вставочные клетки.

Многослойный эпителий бывает ороговевающим, неороговевающим и переходным. Эпителий, в котором происходят процессы ороговения, связанные с дифференцировкой клеток верхних слоев в плоские роговые чешуйки, называют многослойным плоским ороговевающим. При отсутствии ороговения эпителий называется многослойным плоским неороговевающим.


Переходный эпителий выстилает органы, подверженные сильному растяжению — мочевой пузырь, мочеточники и др. При изменении объёма органа толщина и строение эпителия также изменяется.

Онтофилогенетическая классификация

Наряду с морфологической классификацией, используется онтофилогенетическая классификация, созданная российским гистологом Н. Г. Хлопиным. В основе её лежат особенности развития эпителиев из тканевых зачатков.

Эпидермальный тип эпителия образуется из эктодермы, имеет многослойное или многорядное строение, приспособлен к выполнению прежде всего защитной функции.

Энтодермальный тип эпителия развивается из энтодермы, является по строению однослойным призматическим, осуществляет процессы всасывания веществ, выполняет железистую функцию.

Целонефродермальный тип эпителия развивается из мезодермы, по строению однослойный, плоский, кубический или призматический; выполняет барьерную или экскреторную функцию.

Эпендимоглиальный тип представлен специальным эпителием, выстилающим, например, полости мозга. Источником его образования является нервная трубка.

Ангиодермальный тип эпителия образуется из мезенхимы, выстилает изнутри кровеносные сосуды.

Виды эпителия

Однослойный эпителий

Однослойный плоский эпителий (эндотелий и мезотелий). Эндотелий выстилает изнутри кровеносные, лимфатические сосуды, полости сердца. Эндотелиальные клетки плоские, бедны органеллами и образуют эндотелиальный пласт. Хорошо развита обменная функция. Они создают условия для кровотока. При нарушении эпителия образуются тромбы. Эндотелий развивается из мезенхимы. Вторая разновидность — мезотелий — развивается из мезодермы. Выстилает все серозные оболочки. Состоит из плоских клеток полигональной формы, связанных между собой неровными краями. Клетки имеют одно, реже два уплощённых ядра. На апикальной поверхности имеются короткие микроворсинки. Они обладают всасывательной, выделительной и разграничительной функциями. Мезотелий обеспечивает свободное скольжение внутренних органов относительно друг друга. Мезотелий выделяет на свою поверхность слизистый секрет. Мезотелий предотвращает образование соединительнотканных спаек. Достаточно хорошо регенерируют за счет митоза.

Однослойный кубический эпителий развивается из энтодермы и мезодермы. На апикальной поверхности имеются микроворсинки, увеличивающие рабочую поверхность, а в базальной части цитолемма образует глубокие складки, между которыми в цитоплазме располагаются митохондрии, поэтому базальная часть клеток выглядит исчерченной. Выстилает извитые почечные канальцы (проксимальные и дистальные), покрывает поверхность яичника, сосудистые сплетения мозга; пигментный эпителий сетчатки глаза, выводные протоки слюнных желез, фолликулы щитовидной железы, терминальные бронхиолы, желчные канальцы.


Однослойный цилиндрический эпителий встречается в органах среднего отдела пищеварительного канала, пищеварительных железах, выводных протоков поджелудочной железы, желчных протоков печени,половых железах и половых путях. При этом строение и функция определяются его локализацией. Развивается из энтодермы и мезодермы. Слизистую желудка выстилает однослойный железистый эпителий. Он вырабатывает и выделяет слизистый секрет, который распространяется по поверхности эпителия и защищает слизистую оболочку от повреждения. Цитолемма базальной части также имеет небольшие складки. Эпителий обладает высокой регенерацией.

Почечные канальцы и слизистая оболочка кишечника выстлана каёмчатым эпителием. В каёмчатом эпителии кишечника преобладают каёмчатые клетки — энтероциты. На их верхушке располагаются многочисленные микроворсинки. В этой зоне происходит пристеночное пищеварение и интенсивное всасывание продуктов питания. Слизистые бокаловидные клетки вырабатывают на поверхность эпителия слизь, а между клетками располагаются мелкие эндокринные клетки. Они выделяют гормоны, которые обеспечивают местную регуляцию.

Однослойный многорядный реснитчатый эпителий. Он выстилает воздухоносные пути и имеет эктодермальное происхождение. В нём клетки разной высоты, и ядра располагаются на разных уровнях. Клетки располагаются пластом. Под базальной мембраной лежит рыхлая соединительная ткань с кровеносными сосудами, а в эпителиальном пласте преобладают высокодифференцированные реснитчатые клетки. У них узкое основание, широкая верхушка. На верхушке располагаются мерцательные реснички. Они полностью погружены в слизь. Между реснитчатыми клетками находятся бокаловидные — это одноклеточные слизистые железы. Они вырабатывают слизистый секрет на поверхность эпителия. Имеются эндокринные клетки. Между ними располагаются короткие и длинные вставочные клетки, это стволовые клетки, малодифференцированные, за счёт них идёт пролиферация клеток. Мерцательные реснички совершают колебательные движения и перемещают слизистую плёнку по воздухоносным путям к внешней среде.

Многослойный эпителий

Многослойный плоский неороговевающий эпителий. Он развивается из эктодермы, выстилает роговицу, передний отдел пищеварительного канала и участок анального отдела пищеварительного канала, влагалище. Клетки располагаются в несколько слоёв. На базальной мембране лежит слой базальных или цилиндрических клеток. Часть из них — стволовые клетки. Они пролиферируют, отделяются от базальной мембраны, превращаются в клетки полигональной формы с выростами, шипами и совокупность этих клеток формирует слой шиповатых клеток, располагающихся в несколько этажей. Они постепенно уплощаются и образуют поверхностный слой плоских, которые с поверхности отторгаются во внешнюю среду.