Файл: Kots_Ya_M_-_Sportivnaya_fiziologia_Uchebnik_dlya_institutov_fizicheskoy_kultury.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 04.11.2020

Просмотров: 4242

Скачиваний: 9

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Коц Я.М. - Спортивная физиология. Учебник для институтов физической культуры.

Оглавление

Общая физиологическая классификация физических упражнений

Физиологическая классификация спортивных упражнений

Глава 2. Динамика физиологического состояния организма при спортивной деятельности

Предстартовое состояние и разминка

Врабатывание, "мертвая точка", "второе дыхание"

Устойчивое состояние

Утомление

Восстановление

Глава 3. Физиологические основы мышечной силы и скоростно-силовых качеств (мощности)

Физиологические основы мышечной силы

Физиологические основы сноростно-силовых качеств (мощности)

Глава 4. Физиологические основы выносливости

Аэробные возможности организма и выносливость

Кислородтранспортная система и выносливость

Мышечный аппарат и выносливость

Глава 5. Физиологические основы формирования двигательных навыков и обучения спортивной технике

Условнорефлекторные механизмы как физиологическая основа формирования двигательных навыков

Роль афферентации (обратных связей) в формировании и сохранении двигательного навыка

Двигательная память

Автоматизация движений

Спортивная техника и энергетическая экономичность выполнения физических упражнений

Физиологическое обоснование принципов обучения спортивной технике

Глава 6. Влияние температуры и влажности воздуха на спортивную работоспособность

Физические механизмы теплоотдачи в условиях повышения температуры и влажности воздуха

Физиологические механизмы усиления теплоотдачи в условиях повышенных температуры и влажности воздуха

Тепловая адаптация (акклиматизация)

Питьевой режим

Спортивная деятельность в условиях пониженной температуры воздуха (холода)

Глава 7. Спортивная работоспособность в условиях пониженного атмосферного давления (среднегорья и при смене поясно-климатических условий

Острые физиологические эффекты пониженного атмосферного давления

Горная акклиматизация (адаптация к высоте)

Спортивная работоспособность в среднегорье и после возвращения на уровень моря

Смена поясно-климатических условий

Глава 8. Физиология плавания

Механические факторы

Максимальное потребление кислорода

Кислород транспортная система

Локальные (мышечные) факторы

Терморегуляция

Глава 9. Физиологические особенности спортивной тренировки женщин

Зависимость функциональных возможностей организма от размеров тела

Силовые, скоростно-силовые и анаэробные возможности женщин

Аэробная работоспособность (выносливость) женщин

Менструальный цикл и физическая работоспособность

Глава 10. Физиологические особенности спортивной тренировки детей школьного возраста

Индивидуальное развитие и возрастная периодизация

Возрастньш особенности физиологических функций и систем

Развитие движений и формирование двигательных (физических) качеств

Физиологическая характеристика юных спортсменов

Глава 11. Общие физиологические закономерности (принципы) занятий физической культурой и спортом

Два основных функциональных эффекта тренировки

Пороговые тренирующие нагрузки

Специфичность тренировочных эффектов

Обратимость тренировочных эффектов

Тренируемость

Нервные процессы, связанные с памятью, включают несколько компонентов, каждый из которых имеет самостоятельное значение: 1) восприятие информации, поступающей из разных сенсорных систем; 2) переработку и синтез этой информации; 3) фиксацию (хранение) результатов переработки информации; 4) извлечение из памяти нужной информации и 5) программирование ответных реакций. В некоторых случаях у спортсменов извлечение из памяти нужной информации временно затрудняется (в частности, при сбивающих факторах и отрицательных эмоциях, нарушающих нормальную деятельность нервной системы). Вследствие этого ухудшается выполнение физических упражнений.

Различные параметры двигательного акта запоминаются и извлекаются из памяти неодинаково. В существенной мере это зависит от объема и специфики поступающей информации. Например, силовое напряжение при статических усилиях воспроизводится с отклонениями от заданного на 15-25%, а при движении-значительно точнее. Это обусловлено тем, что при статических усилиях импульсация по обратным связям приходит в ЦНС только от рецепторов мышц, а при движениях в протекании обратных связей принимают участие и рецепторы суставов, реагирующие на угловое смещение, что позволяет более точно определять степень напряжения мышц (В. С. Фарфель). Достаточно хорошо в памяти сохраняются последовательность и временные параметры осуществления различных фаз двигательного акта.

Эффективность запоминания и последующая точность воспроизведения временных и пространственных параметров физических упражнений связаны со многими факторами: степенью, обученностй, сложностью двигательного акта, числом повторений движения на занятии, величиной интервалов между ними, длительностью перерывов между тренировками, эмоциональным состоянием и др.

Так, при пассивном и активном обучении простому движению - воспроизведению амплитуды движения по дуге в лучезапястном суставе - величина ошибки, значительно увеличивается в первые 6 часов после тренировки. Через 12 ч дальнейшее увеличение ошибки менее значительно (рис. 56, А).

При обучении сложным гимнастическим упражнениям после перерывов в 6, 12 и 24 ч процент успешных попыток увеличивается (рис. 56, Б). Но спустя 48 ч выполнение упражнения значительно ухудшается. Это говорит о том, что ежедневная тренировка более эффективна, чем тренировка через день. При параллельном обучении на одном занятии двум гимнастическим упражнениям забываемость увеличивается, особенно в тех случаях, когда эти упражнения значительно отличаются Друг от друга (А. В. Менхин).

В процессе обучения обязательным упражнениям в фигурном катании на коньках также было выявлено, что двигательная память при перерывах в занятиях в 1 день значительно лучше, чем в 2, 4 и 10 дней. Наибольшее улучшение точности наблюдалось лри выполнении фигур тремя сериями по 5 попыток в каждой с интервалами между сериями в 3 мин (И. В. Абсалямова).


Автоматизация движений

Совершенствование техники спортивных движений теснейшим образом связано с автоматизацией многих компонентов двигательного акта. т. е. с выполнением их без осознавания. В организме осуществляется большое число не всегда осознаваемых рефлекторных актов, возникающих непроизвольно. Это так называемые первичные автоматизмы, связанные с различными безусловнореф-лекторными реакциями, регулирующими вегетативные и некоторые двигательные функции (мигание, глотание и др.). Наряду с этим имеются и вторичные автоматизмы, т. е. реакции, которые ранее протекали с осознаванием и лишь потом получили возможность осуществляться автоматически. К ним относятся, в частности, двигательные навыки. Сформировавшиеся двигательные навыки характеризуются хорошо закрепленными временными связями, и многие их компоненты могут осуществляться без осознавания, т. е. автоматизированно.

Рассматривая автоматизацию навыка, следует разграничивать осознавание общих сторон двигательного акта, связанных с перемещением крупных звеньев тела, и частных, касающихся положения мелких структурных элементов, работы отдельных мышц и их двигательных единиц, участвующих в движении. Деятельность мелких мышечных структур, как и отдельных функциональных мотор-йых единиц или их небольших групп, обычно не осознается человеком. Без специальной тренировки не отражается в сфере сознания и деятельность многих отдельных мышц. Хорошо осознаются движения только крупных звеньев и тела в целом. Весьма слабо отражаются в сознании вегетативные компоненты навыков.

В нервной системе процессы управления автоматизированными и неавтоматизированными компонентами движения тесно связаны друг с другом. При обучении и тренировке сознательный контроль за общим характером осуществления движений имеет весьма важное значение. Сознательное формирование стоящих перед спортсменом задач, в частности связанных с общей структурой движений, положительно воздействует и на многие из тех автоматизированных процессов в нервных центрах, мышцах и вегетативных органах, которые совершенно не осознаются человеком. На доведении до сознания особенностей выполнения физических упражнений (например, характера совершенных спортсменом ошибок), основано значение срочной информации, получаемой, в процессе или сразу после окончания упражнения (В. С. Фарфель).

Следует указать, что детали двигательного акта, выполненного автоматизированно, после завершения движения могут частично и далее полностью осознаваться (например, действия вратаря или борца при внезапной опасной ситуации).

Поле осознания у человека относительно узкое, оно не может одновременно воспринимать большое количество различных по своему характеру компонентов двигательного акта. Когда поле сознания занимают одни компоненты моторного акта, одновременно из него вытесняются другие. Поэтому при обучении технике движения нужно возможно большее число этих компонентов доводить до автоматизированного выполнения. Тогда можно будет включать в поле сознания спортсмена только самое главное, связанное с основными задачами выполнения упражнения. Детали же должны осуществляться автоматизированно.


Спортивная техника и энергетическая экономичность выполнения физических упражнений


Рис. 57. Потребление О2 байдарочниками с разной технической подготовленностью при прохождении дистанции 400 м за 3 мин (по Ф. М. Кузнецову): 1 - начало, 2 - середина, 3 - конец тренировочного процесса

Экономичность энергетических затрат при двигательной деятельности достигается за счет совершенствования координации двигательных и вегетативных функций.

В первую очередь энергозатраты снижаются за счет совершенствования техники выполнения физических упражнений. При несовершенной технике вследствие возникновения в нервных центрах процессов иррадиации в движении могут принимать участие лишние мышцы и лишние двигательные единицы. Такая работа характеризуется повышением расхода энергии. С улучшением техники выполнения двигательного акта в результате процессов концентрации в нервной системе в работу вовлекаются лишь необходимые мышечные волокна. В результате энергозатраты уменьшаются (рис. 57).

У спортсменов, хорошо владеющих техникой движений, эконо-мизация энергозатрат обусловлена улучшением координации не. только двигательных, но в некоторой мере и вегетативных функций. Они мобилизуются в процессе двигательной деятельности, главным образом по механизму безусловных рефлексов. Вместе с тем при образовании двигательного навыка может происходить изменение характера протекания вегетативных безусловных рефлексов, приспособление их не вообще к мышечной работе, а именно к данному виду двигательной деятельности. В результате снижаются энергетические затраты на обеспечение работы сердца, дыхательных мышц и некоторых других вегетативных органов. Эти особенности функций вегетативных органов, приобретенные в процессе формирования навыков, и составляют условнорефлекторные дыхательные (М. Е. Маршак, А. Б. Гандельсман, К. М. Смирнов и др.), сердечно сосудистые (В. В. Васильева, В. И. Георгиев и др.) и другие вегетативные компоненты двигательного акта.



Физиологическое обоснование принципов обучения спортивной технике

Эффективность обучения спортивной технике тесно связана с Целым рядом педагогических принципов обучения, соблюдение которых возможно только при условии учета физиологических закономерностей функционирования организма, особенно тех, которые связаны с деятельностью нервной и мышечной систем.

Принцип постепенного усложнения техники движений. При осуществлении спортивных движений функционируют очень сложные временные связи, управляющие одновременной деятельностью многих мышц. Такие связи образуются постепенно, по мере широкого использования ранее образованных двигательных рефлексов (см. У.Г). Существенна при этом роль подготовительных упражнений, позволяющих усвоить отдельные фрагменты движения и затем включить их в целостную систему разучиваемого сложного двигательного акта.


Центральная нервная система по механизму экстраполяции способна сразу программировать новые по своему характеру двигательные акты, но лишь в относительно ограниченных пределах. Когда разучиваемое упражнение недостаточно связано с ранее приобретенным опытом, для выработки программ в ряде случаев необходимо поступление в ЦНС по обратным связям специальной информации. Без соответствующей предварительной подготовки человек не может правильно программировать сложные взаимоотношения в деятельности мышц, осуществляющих этот двигательный акт. Но если такое упражнение выполнить несколько раз с помощью тренера, ЦНС благодаря обратным связям получит информацию о динамике последовательных изменений в положении звеньев тела и в работе соответствующих мышц. Это позволит сформировать в нервных центрах такую программу их деятельности, которая в дальнейшем будет использована спортсменом для самостоятельного выполнения движения.

Принцип многократного систематического повторения упражнений. Временные связи, являющиеся основой двигательных навыков, формируются и совершенствуются при обязательном повторении упражнения. Важное значение при этом имеют число повторений и интервалы как между повторениями, так и между тренировочными занятиями. Не только недостаточное, но и чрезмерное число повторений (с ним связано развитие утомления) затрудняет формирование навыка. То же нужно отметить и в отношении интервалов между тренировочными занятиями. По мере роста тренированности число повторений упражнения на одном занятии и частоту занятий можно увеличить.

Принцип разносторонней технической подготовки. Временные связи, образующиеся в процессе формирования двигательного навыка, при многократном стереотипном выполнении движений могут способствовать сужению экстраполяции. Это сужение, возникающее при односторонней тренировке, ограничивает возможность изменять характер движений адекватно изменениям ситуаций. Между тем изменение внешней обстановки (особенности трассы или снаряда, возникновение препятствий и т.д.) и состояния спортсмена (эмоциональное перевозбуждение, утомление, травма и др.) могут вызвать несоответствие стереотипной программы выполнения движения новой ситуации. Вследствие этого двигательный акт может быть неполноценным.

Обучение стереотипному выполнению только ограниченного числа физических упражнений тормозит также и развитие тренируемости.

Принцип индивидуализации обучения. Генетические особенности, детерминирующие способность быстро обучаться новым сложным движениям, у разных спортсменов могут значительно различаться. Весьма различным у них может быть также и фонд ранее приобретенных навыков. Оба эти фактора предопределяют необходимость индивидуального подхода как при спортивном отборе, так и при обучении технике спортивных движений.


Глава 6. Влияние температуры и влажности воздуха на спортивную работоспособность


Рис. 58. Изменение ректальной температуры у стайеров во время бега на уровне около 70%, МГЩ ври различных условиях внешней среды: 1 - 30,5° (отн. влажность 34%), 2 - 28° (отн. влажность 38%), 3- 15,6° (оти. влажность 32%)

Во время напряженной и продолжительной спортивной нагрузки (например, марафонского бега) теплопродукция в работающих мышцах в 15-20 раз превышает теплопродукцию основного обмена. Практически все образующееся в мышцах тепло передается в кровь и переносится с нею в ядро тела, повышая его температуру до 39-40° и даже более (рабочая гипертермия). Терморегуляция организма направлена в таких случаях на усиление теплоотдачи - передачу избытка тепла поверхности тела путем усиления кровообращения в сети кожных сосудов, откуда тепло отдается в окружающую среду (главным образом за счет испарения.пота).

Повышенные температура и влажность окружающего воздуха серьезно затрудняют теплоотдачу, создавая риск перегревания тела. Чем выше внешняя температура, тем больше подъем температуры тела (рис. 58). В жаркий и влажный день температура тела у марафонца может достигать 41°. Усиленное испарение пота вызывает нарушение водного баланса тела - дегидратацию. Большую нагрузку испытывает сердечно-сосудистая система. Поэтому в таких условиях снижается спортивная работоспособность и возникает угроза перегрева организма - теплового удара.

Снижение спортивной работоспособности при повышенных температуре и влажности воздуха определяют три основных фактора: 1) перегревание тела, 2) быстрая дегидратация и 3) снижение кислородтранспортных возможностей сердечно-сосудистой системы.

Физические механизмы теплоотдачи в условиях повышения температуры и влажности воздуха

Значение разных путей отдачи телом тепла в окружающую среду неодинаково в условиях покоя и при мышечной деятельности и меняется в зависимости от физических факторов внешней среды.

В условиях покоя с повышением внешней температуры сверх комфортной (около 18°С) усиливается теплопроведение с конвекцией. Только когда температура воздуха превышает 30°, т. е. приближается к температуре кожи, начинает усиливаться теплоотдача путем испарения пота. В жаркий день потери тепла проведением с конвекцией минимальны, так как мала разность температур между окружающим воздухом и кожей. Когда внешняя температура превышает температуру поверхности тела (около 33°), направление теплообмена меняется на противоположное, и поверхностные ткани тела получают тепло из окружающей среды. Солнечная радиация создает дополнительные термические нагрузки на организм.

В условиях работы основным путем отдачи тепла является испарение пота с поверхности кожи. По мере повышения внешней температуры роль этого механизма нарастает. Скорость 'испарения пота определяется скоростью потообразования и некоторыми физическими характеристиками окружающей среды, среди которых наиболее существенна относительная влажность воздуха. Скорость испарения пота зависит от разности между влажностью кожи (Рк) и влажностью атмосферного воздуха (Ра) - Увеличение скорости потообразования вызывает повышение Рк и таким образом ускоряет испарение пота при данных внешних условиях. При высокой влажности воздуха градиент влажности между кожей и воздухом (Рк-Ра) уменьшается и испарение пота замедляется. Когда давление водяных паров в окружающем воздухе превышает 40 мм рт. ст., испарение пота с поверхности кожи равно нулю. Поэтому даже при очень высокой температуре воздуха, но при относительно небольшой его влажности спортсмен не испытывает таких трудностей, как при низкой температуре воздуха и высокой влажности. Около 5% теплоотдачи при субмаксимальных аэробных нагрузках происходит за счет испарения воды с воздухоносных путей. При повышении влажности окружающего воздуха этот механизм теплоотдачи также ослабевает.