Файл: Kots_Ya_M_-_Sportivnaya_fiziologia_Uchebnik_dlya_institutov_fizicheskoy_kultury.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 04.11.2020
Просмотров: 4331
Скачиваний: 9
СОДЕРЖАНИЕ
Коц Я.М. - Спортивная физиология. Учебник для институтов физической культуры.
Общая физиологическая классификация физических упражнений
Физиологическая классификация спортивных упражнений
Глава 2. Динамика физиологического состояния организма при спортивной деятельности
Предстартовое состояние и разминка
Врабатывание, "мертвая точка", "второе дыхание"
Глава 3. Физиологические основы мышечной силы и скоростно-силовых качеств (мощности)
Физиологические основы мышечной силы
Физиологические основы сноростно-силовых качеств (мощности)
Глава 4. Физиологические основы выносливости
Аэробные возможности организма и выносливость
Кислородтранспортная система и выносливость
Мышечный аппарат и выносливость
Глава 5. Физиологические основы формирования двигательных навыков и обучения спортивной технике
Условнорефлекторные механизмы как физиологическая основа формирования двигательных навыков
Роль афферентации (обратных связей) в формировании и сохранении двигательного навыка
Спортивная техника и энергетическая экономичность выполнения физических упражнений
Физиологическое обоснование принципов обучения спортивной технике
Глава 6. Влияние температуры и влажности воздуха на спортивную работоспособность
Физические механизмы теплоотдачи в условиях повышения температуры и влажности воздуха
Физиологические механизмы усиления теплоотдачи в условиях повышенных температуры и влажности воздуха
Тепловая адаптация (акклиматизация)
Спортивная деятельность в условиях пониженной температуры воздуха (холода)
Острые физиологические эффекты пониженного атмосферного давления
Горная акклиматизация (адаптация к высоте)
Спортивная работоспособность в среднегорье и после возвращения на уровень моря
Смена поясно-климатических условий
Максимальное потребление кислорода
Глава 9. Физиологические особенности спортивной тренировки женщин
Зависимость функциональных возможностей организма от размеров тела
Силовые, скоростно-силовые и анаэробные возможности женщин
Аэробная работоспособность (выносливость) женщин
Менструальный цикл и физическая работоспособность
Глава 10. Физиологические особенности спортивной тренировки детей школьного возраста
Индивидуальное развитие и возрастная периодизация
Возрастньш особенности физиологических функций и систем
Развитие движений и формирование двигательных (физических) качеств
Физиологическая характеристика юных спортсменов
Глава 11. Общие физиологические закономерности (принципы) занятий физической культурой и спортом
Два основных функциональных эффекта тренировки
Пороговые тренирующие нагрузки
Специфичность тренировочных эффектов
Таким образом, повышенная температура окружающей среды уменьшает температурный градиент между воздухом и кожей, а также между кожей и ядром тела, создавая затруднения для теплоотдачи. Эти затруднения тем больше, чем ближе внешняя температура к температуре кожи. Аналогичным образом повышенная влажность окружающего воздуха создает барьер для потери тепла путем испарения. Одновременное повышение температуры и влажности воздуха может приводить к чрезмерному повышению температуры тела при напряженной и продолжительной спортивной деятельности.
Физиологические механизмы усиления теплоотдачи в условиях повышенных температуры и влажности воздуха
ВЛАЖНОСТИ ВОЗДУХА
В условиях повышения температуры и влажности воздуха усиление теплоотдачи осуществляется двумя основными физиологическими механизмами: 1) усилением кожного кровотока, что увеличивает перенос тепла от ядра к поверхности тела и обеспечивает снабжение потовых желез водой, и 2) усилением потообразования.
Кожный кровоток и температура кожи
Кожный кровоток у взрослого человека при комфортных условиях внешней среды составляет в покое около 0,16 л/м /мин, во время работы - до 1 л/м2/мин, а при очень высокой внешней температуре может достигать 2,6 л/м2/мин. Это означает, что в очень жарких условиях до 20% сердечного выброса может направляться в кожную сосудистую сеть для предотвращения перегревания тела. В комфортных условиях при такой же работе эта доля сердечного выброса достигает лишь 5%. Мощность нагрузки практически не влияет на температуру кожи. Средняя температура кожи при работе на велоэргометре (в помещении) есть линейная функция внешней температуры (в пределах от 5 до 35°).
Температура кожи линейно связана с величиной кожного кровотока. Усиленный кровоток в коже повышает ее температуру, и если температура окружающей среды ниже, чем температура кожи, то повышаются потери тепла проведением с конвекцией и радиацией. Повышение, кожной температуры уменьшает также влияние внешней радиации на тело.
Движение воздуха усиливает отдачу тепла конвекцией и испарением. В результате средняя кожная температура снижается и, таким образом, увеличиваются температурные градиенты "ядро- кожа" и "кожа - окружающая среда", что еще более облегчает Условия для теплопотерь конвекцией и радиацией. При высокой температуре воздуха его дополнительное движение делает рабочую гипертермию умеренной. Благодаря усиленной конвекции воз-Духа при езде на велосипеде средняя температура кожи значительно ниже, а теплоотдача выше, чем при беге.
Скорость потообразования и потоотделения зависит от целого ряда факторов. Главными из них являются скорость, энергопродукции и физические условия окружающей среды (температура и влажность воздуха). Если одна и та же физическая нагрузка выполняется при разных внешних температурах (не считая очень высоких и очень низких), внутренняя температура тела остается одинаковой, а скорость потоотделения возрастает как линейная функция средней температуры кожи (рис. 59). Наоборот, при постоянной внешней температуре средняя температура кожи постоянна, а скорость потоотделения линейно связана с внутренней температурой тела, которая, в свою очередь, есть функция мощности нагрузки. Следовательно, чем больше мощность выполняемой работы, тем выше скорость потоотделения при той же средней температуре кожи. Таким образом, скорость потоотделения зависит как от температуры ядра тела, так и от температуры его оболочки. Высокая влажность воздуха даже при относительно невысокой его температуре затрудняет испарение пота: усиливается потообразование без эффективного потоиспарения. В условиях покоя при температуре воздуха 43° секреция пота увеличивается более чем в 3 раза, если относительная влажность воздуха повышается с 30 до 84%. Во время нетяжелой работы повышение влажности воздуха с 30 до 57% почти удваивают скорость потообразования.
|
По мере пребывания в жарких условиях происходит постепенное снижение скорости ("утомление") потообразования. Это наблюдается даже в тех случаях, когда потери воды с потом полностью возмещаются выпитой водой. Снижение скорости потообразования более выражено в условиях повышенной влажности воздуха, чем при жарком сухом воздухе. Природа такого, "утомления" процесса потообразования пока не. выяснена. Если у человека после повторного пребывания в сауне (сухой жаркий воздух) происходит "утомление" потообразования, то мышечная работа еще способна вызвать у него достаточно интенсивное потоотделение. Высушивание кожи периодическим ее вытиранием или за счет увеличения скорости движения воздуха ускоряет в этих условиях процесс потоотделения.
Следует отметить, что при одинаковых физических нагрузках и внешней температуре потоотделение у женщин меньше, чем у мужчин.
Водно-солевой баланс
Одним из самых тяжелых последствий усиленного потоотделения во время мышечной работы, выполняемой в условиях повышенных температуры и влажности воздуха, является нарушение водно-солевого баланса организма. Оно заключается в быстрой потере воды телом, т. е. в развитии острой дегидратации (обезвоживания), а также в изменении содержания в водных пространствах тела ряда электролитов (солей).
Дегидратация может быть вызвана разными причинами: пребыванием в условиях повышенной температуры внешней среды (термическая дегидратация), продолжительной и интенсивной мышечной работой (рабочая дегидратация) и комбинацией этих двух условий, т. е. интенсивной мышечной работой при повышенной температуре (терморабочая дегидратация). Разные формы дегидратации вызывают неодинаковые изменения в функциях разных тканей и систем организма.
При рабочей дегидратации особенно заметно снижение физической работоспособности. Значительная рабочая дегидратация развивается лишь при длительных (более 30 мин) и достаточно интенсивных упражнениях (субмаксимальной аэробной мощности), особенно если они выполняются в условиях повышенных температуры и влажности воздуха. При тяжелой, но кратковременной работе даже в условиях повышенных температуры и влажности воздуха .сколько-нибудь значительная дегидратация не успевает развиться.
Поддержание температуры тела в допустимых пределах для организма важнее, чем сохранение воды. При продолжительной тяжелой работе, сопровождающейся сильным потоотделением, может возникать большой дефицит воды в теле. Например, марафонцы могут терять во время соревнований в жарких условиях до 6 л воды с потом. Даже при некотором восполнении потерь воды приемом жидкостей на дистанции вес тела у марафонцев снижается в среднем на 5%, а в предельных случаях - на 8% с потерей 13-14% общего количества воды. Общие потери воды в резульг тате мышечной работы можно легко оценить, сравнив вес тела до и после работы (с учетом выпитой в этот промежуток воды).
|
Одним из наиболее важных отрицательных последствий дегидратации является уменьшение объема плазмы крови. При рабочей дегидратации с потерей 4% веса тела объем плазмы уменьшается на 16-18%. Соответственно уменьшается объем циркулирующей крови, что приводит к снижению венозного возврата и как следствие-к падению систолического объема. Для компенсации последнего повышается ЧСС (см. рис. 61). Другим следствием уменьшения объема плазмы крови является гемоконцент рация с повышением показателя гематокрита и вязкости крови, что увеличивает нагрузку на сердце и может снижать его производительность.
Одним из тяжелых последствий большой потери воды телом является уменьшение объема межклеточной (тканевой) и внутриклеточной жидкостей. В клетках с пониженным содержанием воды и измененным равновесием электролитов нарушается нормальная жизнедеятельность. Это, в частности, относится к скелетным и сердечной мышцам, сократительная способность которых в условиях дегидратации может значительно снижаться.
Физиологические механизмы, контролирующие поддержание нормального водно-солевого баланса во всем теле и его водных пространствах, многообразны. Уменьшение содержания воды в плазме повышает в ней концентрацию электролитов и других веществ, что ведет к повышению осмотического давления плазмы. В процессе работы осмоляр-ность плазмы крови непрерывно повышается также вследствие выхода в кровь низкомолекулярных метаболических продуктов и ионов калия из активных мышечных клеток. В результате часть жидкости перемещается из межклеточных (тканевых) пространств в сосуды, восполняя плазмопотери. Благодаря этому удается восстанавливать объем плазмы и поддерживать его на относительно постоянном уровне после периода снижения в начале работы. По мере развития термической дегидратации (в отличие от рабочей) объем плазмы непрерывно уменьшается.
При высокой внешней температуре в результате усиления кожного кровотока происходит интенсивная фильтрация жидкости из кожных капилляров во внесосудистые (тканевые) пространства кожи. Это ведет к интенсивному вымыванию белка, которого в этих пространствах относительно много, в лимфоток и оттуда в кровеносную систему. Переход белка в кровь увеличивает ее онкотиче-ское давление, что вызывает усиление адсорбции воды в кровеносные капилляры из межклеточных (внесосудистых) водных пространств, помогая таким образом поддерживать объем циркулирующей плазмы (крови). Вымывание белка из кожных тканевых пространств в кровь автоматически компенсирует усиленную потерю Воды плазмой крови, вызванную интенсивным потоиспарением.
Во время выполнения мышечной работы уменьшается почечный кровоток, причем тем больше, чем выше интенсивность работы (рис. 62) и в некоторых пределах чем выше температура и влажность воздуха. Параллельно, хотя и в меньшей степени, падает скорость фильтрации воды в почечных клубочках, т. е. снижается скорость образования мочи. Уменьшение почечного кровотока и скорости мочеобразования при работе в жарких условиях усиливает задержку воды почками (антидиурез). Одним из механизмов такой задержки является повышенное выделение из гипофиза антидиуретического гормона (АДГ) в ответ на снижение объема плазмы (дегидратацию) и увеличение ее осмолярности.
Важным дополнительным источником потоотделения во время мышечной работы служит вода, связанная с гликогеном - "эндогенная" вода, которая освобождается при расщеплении гликогена. С каждым граммом гликогена связано 2,7 г воды. Таким образом, гликогенолиз является не только источником энергии для сокращающихся мышц, но и дополнительным источником воды для работающего организма.
Главную роль в восполнении потерь воды в результате усиленного потоотделения при продолжительной напряженной мышечной работе (особенно в жарких условиях) играет прием жидкостей - питье воды или водных растворов во время и после работы.
При потере воды с потом организм теряет и некоторые минеральные вещества (соли). По сравнению с другими жидкостями пот является сильно разбавленным водным раствором. Концентрация в нем ионов натрия и хлора составляет примерно 1/3 их концентрации в плазме и 1/5 в мышцах. Таким образом, пот - это гипотонический раствор по сравнению с плазмой крови. Ионная концентрация пота сильно варьирует у разных людей и очень зависит от скорости потоотделения и состояния тепловой акклиматизации.
С увеличением скорости потообразования концентрация ионов натрия и хлора в поте увеличивается, концентрация ионов кальция уменьшается, а ионов калия и магния не изменяется. Следовательно, при длительной напряженной работе (например, во время марафонского бега) спортсмен теряет с потом главным образом ионы натрия и хлора, т. е. те ионы, которые находятся в основном в жидкости внеклеточных пространств - плазме и тканевой жидкости. Это главные электролиты, которые больше других определяют осмотическое давление плазмы и тканевых жидкостей, а значит, объем внеклеточной жидкости в теле. Потери ионов калия и магния, связанных с внутриклеточным водным пространством, значительно меньше.
Следует, однако, иметь в виду, что с потом уходит относительно больше воды, чем электролитов (солей). Поэтому при общем снижении содержания электролитов их концентрация в жидкостях тела повышается. Следовательно, во время продолжительного сильного потоотделения потребность организма в замещении воды больше, чем в немедленном восстановлении электролитов.