Файл: Модуль 3 Скважинная добыча нефти Способы регулирования подачи и напора уэцн.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 25.10.2023
Просмотров: 134
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
2. Сравнительно низкий коэффициент полезного действия (КПД) газлифтной системы.
3. Возможность образования стойких эмульсий в процессе подъема продукции скважин.
Исходя из указанного выше, газлифтный (компрессорный) способ эксплуатации скважин, в первую очередь, выгодно использовать на крупных месторождениях при наличии скважин с большими дебитами и высокими забойными давлениями после периода фонтанирования.
Далее он может быть применен в наклонно направленных скважинах и скважинах с большим содержанием мехпримесей в продукции, т.е. в условиях, когда за основу рациональной эксплуатации принимается межремонтный период (МРП) работы скважин.
При наличии вблизи газовых месторождений (или скважин) с достаточными запасами и необходимым давлением используют бескомпрессорный газлифт для добычи нефти.
Эта система может быть временной мерой - до окончания строительства компрессорной станции. В данном случае система газлифта остается практически одинаковой с компрессорным газлифтом и отличается только иным источником газа высокого давления.
Газлифтная эксплуатация может быть непрерывной или периодической. Периодический газлифт применяется на скважинах с дебитами до 40-60 т/сут или с низкими пластовыми давлениями.
Высота подъема жидкости при газлифте зависит от возможного давления ввода газа и глубины погружения колонны НКТ под уровень жидкости.
В среднем диапазон применяемых значений давления ввода газа составляет 4,0-14,0 МПа. Диапазон производительности газлифтных скважин при непрерывном газлифте 60-2000 т/сут.
Технико-экономический анализ, проведенный при выборе способа эксплуатации, может определить приоритет использования газлифта в различных регионах страны с учетом местных условий. Так, большой МРП работы газлифтных скважин, сравнительная простота ремонта и возможность автоматизации предопределили создание больших газлифтных комплексов на Самотлорском, Федоровском, Правдинском месторождениях в Западной Сибири. Это дало возможность снизить необходимые трудовые ресурсы региона и создать необходимые инфраструктуры (жилье и т.д.) для рационального их использования.
Выделяют следующие осложнения при работе газлифтных скважин:
1. Образование гидратов в газопроводе и газлифтных пусковых клапанах происходит при некачественной осушке газа. Основным методом предотвращения гидратоотложений: в теплообменник (до 40 С) с 2002 г в низкодебитных скважинах начали спускать высокогерметичные НКТ с полимерными уплотнительными кольцами, что привело к сокращению в несколько раз количество скважин с отложениями гидратов.
2. Отложения парафина происходит в скважинах с невысокой пластовой температурой, которая у устья теряется и равна 50-30 С. В скважинах с низкой обводненностью парафин откладывается на глубине 300-500 м от устья. Ликвидация парафиновых пробок производится периодическими горячими обработками.
3.Отложения солей происходит по причине термохимической нестабильности пластовой воды, некачественной подготовке, по минеральному составу воды, используемой для ППД. Для борьбы применяется реагент ПАФ-13А. Закачку осуществляют двумя способами:
-дозирование в поток газа
-задавка в призабойную зону скважины.
Дозирование производится при помощи дозировочных насосов, которые устанавливаются на поверхности у газопроводов. Периодичность проведения продавки в ПЗС зависит от интенсивности выпадения солей в скважине.
3. Наличие песка в продукции практически не влияет на работу подземного оборудования. Однако происходит осаждение песка на забое до полного перекрытия интервала перфорации. Для выноса песка с забоя НКТ спускается ниже интервала перфорации, что увеличивает скорость потока жидкости и улучшает вынос песка на поверхность.
14) Способы освоения скважин.
Способы вызова притока и освоения
К методу облегчения столба жидкости относятся:
I. Промывки (прямая, обратная, комбинированная; промывки
осуществляются различными жидкостями).
II. Закачка газообразного агента (газлифт).
III. Закачка пенных систем
К методу понижения уровня относятся:
I. Тартание желонкой.
И. Свабирование.
III. Понижение уровня глубинным насосом.
К методу мгновенной депрессии относятся:
I. Способ падающей пробки.
П. Задавка жидкости глушения в пласт.
Рассмотрим некоторые из способов.
Тартание желонкой — не только способ вызова притока и освоения, но и исторический способ эксплуатации скважин с очень низкими пластовыми давлениями. Осуществляется желонкой, представляющей собой отрезок толстостенной трубы (как правило, бурильной), в нижней части которой имеется обратный клапан. Спускается в скважину на канате с помощью лебедки. Так как объем желонки невелик, то процесс вызова притока тартанием достаточно медленный. Работа проводится при открытом устье, что представляет определенную опасность, особенно при фонтанных проявлениях.Спуск желонки, как правило, проводится в обсадную колонну.
Свабирование — способ понижения уровня в скважине
, в которую спущена колонна НКТ. Сваб представляет собой трубу небольшого диаметра, на наружной поверхности которой укреплены эластичные уплотнительные манжеты, наружный диаметр которых соизмерим с внутренним диаметром НКТ. В нижней части сваба имеется обратный клапан. Уплотнительные манжеты имеют чашеобразную форму, которые при подъеме сваба распираются за счет давления столба жидкости над свабом, уплотняя зазор между наружным диаметром манжет и внутренним диаметром НКТ. Сваб спускается внутрь НКТ на лебедке, а глубина его погружения под уровень жидкости определяется прочностью каната и мощностью привода лебедки. Свабирование — более производительный способ и может осуществляться с использованием фонтанной арматуры (т.е. скважина герметизируется и выброс невозможен) со специальным лубрикатором.
Способ падающей пробки — суть его заключается в том, что колонна НКТ, спускаемая в скважину, в нижней части закрывается специальной пробкой, изготовленной из нефтерастворимого материала. Под действием собственного веса колонна НКТ спускается в скважину до определенной глубины, определяемой из равенства сил сопротивлений и собственного веса колонны. При необходимости увеличения глубины спуска колонны НКТ в нее с поверхности заливается определенное количество воды, удерживаемое в НКТ за счет пробки. При спуске колонны до расчетной глубины внутрь НКТ сбрасывается тяжелый предмет, который выбивает пробку. Так как столб воды в НКТ существенно меньше столба жидкости глушения в скважине, после падения пробки у башмака НКТ возникает достаточно большой перепад давлений, под действием которого жидкость глушения из скважины перетекает в НКТ, приводя к быстрому снижению забойного давления и вызову притока. Задавка жидкости глушения в пласт — при этом вся или большая часть жидкости глушения залавливается в пласт за счет подключения компрессора, давление которого воздействует на уровень жидкости глушения. Когда расчетный объем жидкости глушения поглощен пластом, компрессор отключается и давление в газонаполненной части скважины резко снижается (стравливание давления газа в атмосферу). При этом существенно снижается и забойное давление, провоцируя поступление флюидов из пласта в скважину.
15) Влияние растворенного в нефти газа на работу глубинных насосов
Газ является спутником нефти и его количество в нефти изменяется в широких пределах. Количество газа, выделяющегося из жидкости в процессе ее движения по стволу скважины, является величиной переменной и зависит от термодинамических условий и характеристики ГЖС. В области приема ЭЦН нарушение термогидродинамического равновесия системы усиливается.
Влияние присутствия свободного газа на характеристику насоса проявляется в ухудшении процесса энергообмена между рабочим колесом и жидкостью и создании условий для интенсивного выделения газа из жидкости. Это приводит к коалесценции пузырьков газа в каналах рабочего колеса, образованию газовых каверн, что ухудшает параметры работы насоса. Особенно ярко эти процессы происходят в насосах, эксплуатирующихся в скважинах с наклонно-направленными стволами. Скопление свободного газа в повышенных частях рабочей ступени насоса кроме уменьшения его производительности способствует интенсификации проявления вибрационных нагрузок.
• Известны следующие методы борьбы с вредным влиянием свободного газа на работу ЭЦН: спуск насоса в зону, где давление на его приеме обеспечивает оптимальную подачу жидкости и устойчивую работу насоса;
• применение сепараторов различных конструкций;
• монтаж на приеме насоса диспергирующих устройств;
• принудительный сброс газа в затрубное пространство;
• применение комбинированных насосов.
Увеличение глубины погружения насоса под динамический уровень жидкости приводит к уменьшению газосодержания смеси у входа в насос за счет возрастания давления. При отсутствии каких-либо ограничений (высокая температура, большой темп набора кривизны ствола скважины и др.), за счет увеличения погружения во многих случаях можно сводить входное газосодержания смеси до вполне допустимой для ЭЦН величины - 10-15 %. При сравнительно небольшой газонасыщенности нефти (до 5060 м3/м3) и не очень высоких значениях давлениях насыщения (до10 МПа) обычно так и поступают. Если же давление насыщения нефти и газонасыщенность достаточно высокие (Г100 м3/м3, Рнас12 МПа), для достижения упомянутых значений входного газосодержания смеси требуется весьма большое заглубление насоса.
16) Назначение и технологии проведения кислотных обработок добывающих скважин.
СКО - один из методов увеличения продуктивности доб.скважин, увеличения приемистости нагн.скважин. Область применения СКО – обработка ПЗП, содержащих в породе карбонатов кальция, магния и других минералов, активно реагирующих с Кислотой Для обработки карбонатных коллекторов наибольшее распространение получила соляная кислота, а для обработки терригенных коллекторов - смесь соляной и плавиковой кислот (глиняная кислота).
Виды СКО
Область применения кислотные ванны при освоении для очистки поверхности забоя от глинистой корки
СКО под давлением проникающие обработки ПЗП для образования глубокопроникающих каналов
глинокислотная обработка для растворения глинистых пропластков, запрещается для проведения в карбонатных породах
пенокислотная обработка для замедления реакций в 4-5 раз, тем самым увеличивая глубину проникновения
Термокислотная обработка(до 80-90 0С) для плотных кабонатных пород с целью ускорения реакции
обработка нефтекислотными эмульсиями для увеличения глубины проникновения в ПЗП
Кислотные ванны применяются во всех скважинах с от¬крытым забоем после бурения и при освоении, для очистки по¬верхности забоя от остатков цементной и глинистой корки, продуктов коррозии, кальцитовых выделений из пластовых вод и др. Для скважин, забой которых обсажен колонной и перфо¬рирован, кислотные ванны проводить не рекомендуют. Объем кислотного раствора должен быть равен объему скважины от забоя до кровли обрабатываемого интервала, а башмак НКТ, через который закачивают раствор, спускается до подошвы пласта или забоя скважины. Применяется раствор НС1 повы¬шенной концентрации (15—20%), так как его перемешивания на забое не происходит.
Время выдержки для нейтрализации кислоты для данного месторождения устанавливается опытным путем по замерам концентрации кислоты в отработанном и вытесненном на по¬верхность через НКТ растворе.
Обычно время выдержки составляет 16—24 ч.
Простые кислотные обработки наиболее распространенные, осуществляются задавкой раствора HCL в ПЗС.
17) Виды, назначение и технологии проведения ГДИ.
Гидродинамические исследования скважин (ГДИС) — совокупность различных мероприятий, направленных на измерение определенных параметров (давление, температура, уровень жидкости, дебит и др.) и отбор проб пластовых флюидов (нефти, воды, газа и газоконденсата) в работающих или остановленных скважинах и их регистрацию во времени.
Методы ГДИС предназначены для изучения продуктивных пластов при их испытании, освоении и эксплуатации в добывающих и нагнетательных скважинах с целью получения данных об их продуктивности и приемистости, фильтрационных параметрах и скинфакторе, трассировки границ пласта и особенностях зон дренирования, типа пласта коллектора, анизотропии пласта по проницаемости, режима залежи и др.
Методы ГДИС позволяют непосредственно определить гидропроводность и пьезопроводность пласта, продуктивность скважины, оценить качество вскрытия пласта и технологическую эффективность внедрения методов увеличения дебитов скважин. Кроме того, методами ГДИС можно определить тип коллектора, наличие границ неоднородности гидродинамической связи между скважинами и между пластами и т.д.