ВУЗ: Западно-Казахстанский государственный медицинский университет им. М. Оспанова
Категория: Курсовая работа
Дисциплина: Медицина
Добавлен: 01.02.2019
Просмотров: 1077
Скачиваний: 5
Область сонного (каротидного) синуса. Эта область — место разветвления общей сонной артерии на внутреннюю и наружную— вторая главная рефлексогенная зона.. Возбуждение барорецепторов зоны каротидного синуса, возникающее в результате повышения давления в сонной артерии, вызывает так называемый вазокардиальный рефлекс (рефлекс Бейнбриджа), заключающийся в расширении сосудов и замедлении частоты сердечных сокращений. Следовательно, чем выше давление в дуге аорты и каротидном синусе, тем сильнее нервные влияния, ведущие к снижению кровяного давления. Синокаротидная зона, подобно артериальной, может быть и депрессорной, и прессорной. В случае падения давления в сонной артерии интенсивность импульсации от барорецепторов уменьшается, что сопровождается рефлекторным повышением тонуса мышц сосудистой стенки. Соответственно повышается периферическое сопротивление сосудов и вследствие этого нормализуется артериальное давление.
Сосуды легочного круга кровообращения. Как и в большом круге кровообращения, повышение давления в легочной артерии при раздражении ее барорецепторов закономерно приводит к брадикардии, гипотонии и расширению сосудов селезенки (рефлекс Парина), что сопровождается снижением давления и, следовательно, устранением застоя крови в легких.
В аортальной и каротидной рефлексогенных зонах наряду с барорецепторами имеются еще и хеморецепторы, чувствительные к изменению химического состава крови. Они открыты бельгийскими учеными Корнеем и Жаном Хеймансами в 1926 г. Скопления сенсорных окончаний названы соответственно аортальным и каротидным клубочками (гломусами). Хеморецепторы дуги аорты представляют собой простое расположение клеток. В отличие от них каротидный гломус имеет сложную капиллярную структуру с большим количеством артериоло—венулярных анастомозов. Между капиллярами располагаются клетки двух типов. Клетки I типа заполнены электронно—плотными везикулами, содержащими биогенные амины. Клетки II типа не содержат аминов; своими отростками они окружают клетки I типа. Собственно хеморецепторами считают клетки I типа и свободные нервные окончания.
Хеморецепторы реагируют на изменение концентрации в крови O2, C02, H+. Их возбуждение может возникать также под влиянием некоторых неорганических и органических веществ. Гипоксия, гиперкапния, которые сопровождаются изменением химического состава крови, приводят к возникновению сердечно—сосудистых и дыхательных рефлексов, которые направлены на нормализацию состава крови и поддержание гомеостаза. Каротидные хеморецепторы в большей степени участвуют в регуляции легочной вентиляции, аортальные — преимущественно в регуляции деятельности сердечно—сосудистой системы. Как установлено В. Н. Черниговским, хеморецепторы находятся также в сосудах сердца, селезенки, почек, костного мозга, органов пищеварения и др. Их физиологическая роль состоит в восприятии концентрации питательных веществ, гормонов, осмотического давления крови и передаче сигнала об их изменении в ЦНС.
Механо— и хеморецепторы расположены также в стенках венозного русла. Так, повышение давления в венах брюшной полости неизменно сопровождается рефлекторным учащением и углублением дыхания, усилением сердечного кровотока и присасывающего действия грудной клетки.
Рефлексы, возникающие с рецептивных зон сердечно—сосудистой системы и определяющие регуляцию взаимоотношений в пределах именно этой системы, носят название собственных (системных) рефлексов кровообращения . При небольших силах раздражения рецепторов они возникают без сопровождения другими рефлексами Так, незначительные изменения давления в каротидных синусах влекут за собой прежде всего изменение в системе кровообращения. Это будет собственный рефлекс кровообращения. При увеличении силы раздражения в ответную реакцию помимо сердечно—сосудистой системы вовлекается дыхание. Это будет уже сопряженный рефлекс. Пороги раздражения для собственных рефлексов всегда ниже, чем для сопряженных. Переход от собственных рефлексов к сопряженным совершается постепенно. Сопряженные рефлексы рассматривают как определенную фазу в развитии цепи последовательных рефлексов, вызываемых раздражением сосудистых рефлексогенных зон. Существование сопряженных рефлексов дает возможность системе кровообращения быстро и адекватно приспосабливаться к меняющимся условиям внутренней среды организма.
|
Центральное звено. Центральные механизмы, регулирующие поддержание артериального давления на необходимом организму уровне, т. е. взаимодействие между величиной сердечного выброса и тонуса сосудов, осуществляются за счет совокупности нервных структур, которые принято называть сосудодвигательным (вазомоторным) центром. Это понятие имеет собирательное функциональное значение, включающее различные уровни центральной регуляции кровообращения с иерархической соподчиненностью разных ее этажей. Структуры, относящиеся к вазомоторному центру, локализуются в спинном, продолговатом мозгу, гипоталамусе, коре больших полушарий
Спинальный уровень регуляции. Нервные клетки, аксоны которых образуют сосудосуживающие волокна, располагаются в боковых рогах грудных и первых поясничных сегментов спинного мозга. Эти клетки И. П. Павлов назвал спинальным сосудосуживающим центром. Установлено, что при раздражении чувствительных окончаний соматических нервов в спинном мозгу происходит передача возбуждения на преганглионарные симпатические нейроны и таким образом осуществляется замыкание рефлексов, регулирующих сосудистый тонус. Отделение спинного мозга от продолговатого сопровождается падением величины кровяного давления, которое вскоре восстанавливается до исходных показателей. Спинальные сосудосуживающие нейроны поддерживают свой уровень возбудимости в основном импульсами от вышерасположенных СТРУКТУР нервной системы.
Бульварный уровень регуляции. Сосудодвигательный центр продолговатого мозга является основным центром поддержания тонуса сосудов и рефлекторной регуляции кровяного давления. Его локализация была установлена Ф. В. Овсянниковым (1871) с помощью метода перерезок ствола мозга. У млекопитающих этот центр расположен на дне IV желудочка головного мозга в его верхней части по обе стороны от средней линии.
Сосудодвигательный центр подразделяется на депрессорную, прессорную и кардиоингибирующую зоны. Депрессорная зона способствует снижению артериального давления путем уменьшения активности симпатических сосудосуживающих волокон, вызывая тем самым расширение сосудов и падение периферического сопротивления, а также путем ослабления симпатической стимуляции сердца, т. е. уменьшения сердечного выброса. Депрессорная зона является местом переключения импульсов, поступающих сюда с барорецепторов рефлексогенных зон, которые вызывают центральное торможение тонических разрядов вазоконстрикторов. Кроме того, Депрессорная область оказывает рефлекторное угнетение прессорной зоны и активирует парасимпатические механизмы.
Прессорная зона оказывает прямо противоположное действие, повышая артериальное давление через увеличение периферического сопротивления сосудов и сердечного выброса. Взаимодействие депрессорных и прессорных структур сосудодвигательного центра носит сложный синерго—антагонистический характер.
Кардиоингибирующее действие третьей зоны опосредуется волокнами блуждающего нерва, идущими к сердцу. Его активность приводит к уменьшению сердечного выброса и тем самым объединяется с активностью депрессорной зоны в снижении артериального давления.
Деление сосудодвигательного центра на зоны довольно условно, так как из—за взаимного перекрытия зон определить границы невозможно. В одной и той же
зоне могут быть зарегистрированы и сосудорасширяющие, и сосудосуживающие нейроны. Функциональное различие нейронов согласуется с представлением о наличии депрессорной и прессорной зон.
Состояние тонического возбуждения сосудодвигательного центра и, соответственно, уровень общего артериального давления регулируются импульсами, идущими от сосудистых рефлексогенных зон (рис. 9.47). Кроме того, этот центр входит в состав ретикулярной формации продолговатого мозга, откуда также получает многочисленные коллатеральные возбуждения от всех специфически проводящих путей.
Будучи автоматическим саморегулирующимся центром, обеспечивающим основные элементарные функции кровообращения (и в первую очередь оптимальный уровень давления в магистральных сосудах), сосудодвигательный центр продолговатого мозга в реакциях целого организма выступает в тесном взаимодействии с гипоталамусом, мозжечком, базальными ядрами, корой головного мозга. Он осуществляет срочные ответы кровеносной системы, связанные с усиленной мышечной работой, гипоксией, гиперкапнией, ацидозом (Г. П. Конради). Высшая же форма регуляции кровообращения, касающаяся энергетического обеспечения и интеграции разнообразных сложных приспособительных актов и поведенческих реакций, обеспечивается более высоким уровнем нервной системы.
Коронарное кровообращение (circulatio coronaria; синоним венечное кровообращение) — совокупность процессов перемещения крови по коронарным (венечным) сосудам сердца, обеспечивающих доставку кислорода и питательных веществ всем тканям сердца и удаление из них продуктов метаболизма.
Миокард получает кровь из двух венечных артерий — правой и левой, устья которых располагаются в корне аорты, у створок аортального клапана . Ветви левой венечной артерии снабжают кровью левый желудочек, межжелудочковую перегородку, левое и частично правое предсердие, ветви правой — стенки правой половины сердца. Крупные стволы артерии, стелясь по поверхности сердца, отдают ветви, уходящие вглубь под прямым углом; ветвления достигают восьми порядков.
Коронарные артерии относят к артериям концевого типа, однако они имеют межартериальные анастомозы, способные пропустить от 3 до 5% кровотока в бассейне своего расположения. Разрастанию межартериальных анастомозов и увеличению их пропускной способности способствует длительная гипоксия миокарда. Капиллярная сеть миокарда очень густа: число капилляров близко к числу мышечных волокон.
Венозная система сердца имеет сложное строение. В правое предсердие впадает самая крупная вена — коронарный синус, в который сливается венозная кровь из разных отделов сердца (преимущественно от стенок левого желудочка). Кроме того, мелкие вены сердца непосредственно впадают в полости правой половины сердца. Миокард пронизан сетью так называемых несосудистых каналов; по диаметру они соответствуют венулам и артериолам, а по строению стенки напоминают капилляры. Эти каналы соединяют соответствующие сосуды с полостями сердца. К дренажной системе сердца относятся также синусоиды, располагающиеся в глубоких слоях миокарда. В них открываются капилляры. Структурно-функциональные особенности этой системы облегчают быстрый сброс венозной крови. Венечные сосуды обильно снабжены симпатическими и парасимпатическими нервами. Иннервированы и капилляры.
Интенсивность К. к. в норме зависит от потребности сердца в кислороде, которая очень высока (6—8 мл кислорода в 1 мин на 100 гмассы сердца в условиях покоя).
Повышение энергетического обмена при усилении работы сердца обеспечивается за счет увеличения объемной скорости коронарного кровотока, прирост которого происходит за счет расширения коронарных сосудов, открытия капилляров, а также вследствие подъема АД. Следовательно. в условиях покоя организма коронарные сосуды должны обладать высоким тонусом. Сочетание высокого уровня базального обмена в миокарде и высокого тонуса сосудов обеспечивает большой расширительный резерв, позволяющий увеличивать кровоток в 5—7 раз при возрастании работы сердца.
Кровь как живая ткань
Кровь — особая жидкая ткань организма, в которой форменные элементы свободно взвешены в жидкой среде. Кровь как ткань, обладает следующими особенностями: 1) все её составные части образуются за пределами сосудистого русла; 2) межклеточное вещество ткани является жидким; 3) основная часть крови находится в постоянном движении. Основными функциями крови являются транспортная, защитная и регуляторная. Все три функции крови связаны между собой и неотделимы друг от друга. Жидкая часть крови — плазма - имеет связь со всеми органами и тканями и отражает происходящие в них биохимические и биофизические процессы. Количество крови у человека в нормальных условиях составляет от 1/13 до 1/20 части от общей массы (3-5 л.). Цвет крови зависит от содержания в ней оксигемоглобина: артериальная кровь ярко-красная (богата оксигемоглобином), а венозная темно-красная (бедная оксигемоглобином). Вязкость крови в среднем в 5 раз превышает вязкость воды. Поверхностное натяжение меньше натяжения воды. В составе крови 80% — воды, 1% — неорганические вещества (натрий, хлор, кальций), 19% - органические вещества. Плазма крови содержит 90% воды, удельный вес ее составляет 1030, ниже, чем у крови (1056-1060). Кровь как коллоидная система обладает коллоидноосмотическим давлением, т. е. способна удерживать определенное количество воды. Это давление определяется дисперсностью белков, концентрацией соли и другими примесями. Нормальное коллоидно-осмотическое давление составляет около 30 мм. вод. ст. (2940 Па). Форменными элементами крови являются эритроциты, лейкоциты и тромбоциты. В среднем 45% крови составляют форменные элементы, а 55% плазма. Форменные элементы крови представляют собой гетероморфную систему, состоящую из различно дифференцированных в структурно-функциональном отношении элементов. Объединяют их общность гистогенеза и совместное пребывание в периферической крови.
Плазма крови — жидкая часть крови, в которой взвешены форменные элементы. Процентное содержание плазмы в крови составляет 52-60%. Микроскопически представляет собой однородную прозрачную несколько желтоватую жидкость, собирающуюся в верхней части сосуда с кровью после осаждения форменных элементов. Гистологически плазма является межклеточным веществом жидкой ткани крови.
Плазма крови состоит из воды, в которой растворены вещества — белки (7-8% от массы плазмы) и другие органические и минеральные соединения. Основными белками плазмы являются альбумины — 4-5%, глобулины — 3% и фибриноген — 0,2-0,4%. В плазме крови растворены также питательные вещества (в частности, глюкоза и липиды), гормоны, витамины, ферменты и промежуточные и конечные продукты обмена веществ. В среднем 1 литр плазмы человека содержит 900—910 г воды, 65-85 г белка и 20 г низкомолекулярных соединений. Плотность плазмы составляет от 1,025 до 1,029, pH — 7,34-7,43.