ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 30.03.2021

Просмотров: 196

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

В более общем виде концепция полиморфизма выражается фразой "один интерфейс — много методов". Это означает, что для группы связанных действий можно использовать один обобщенный интерфейс. Полиморфизм позволяет понизить уровень сложности за счет возможности применения одного и того же интерфейса для задания целого класса действий. Выбор же конкретного действия (т.е. функции) применительно к той или иной ситуации ложится "на плечи" компилятора. Вам, как программисту, не нужно делать этот выбор вручную. Ваша задача — использовать общий интерфейс.

Первые языки объектно-ориентированного программирования были реализованы в виде интерпретаторов, поэтому полиморфизм поддерживался во время выполнения программ. Однако C++ — это транслируемый язык (в отличие от интерпретируемого). Следовательно, в C++ полиморфизм поддерживается на уровне как компиляции программы, так и ее выполнения.


Наследование


Наследование — это процесс, благодаря которому один объект может приобретать свойства другого. Благодаря наследованию поддерживается концепция иерархической классификации. В виде управляемой иерархической (нисходящей) классификации организуется большинство областей знаний. Например, яблоки Красный Делишес являются частью классификации яблоки, которая в свою очередь является частью класса фрукты, а тот — частью еще большего класса пища. Таким образом, класс пища обладает определенными качествами (съедобность, питательность и пр.), которые применимы и к подклассу фрукты. Помимо этих качеств, класс фрукты имеет специфические характеристики (сочность, сладость и пр.), которые отличают их от других пищевых продуктов. В классе яблоки определяются качества, специфичные для яблок (растут на деревьях, не тропические и пр.). Класс Красный Делишес наследует качества всех предыдущих классов и при этом определяет качества, которые являются уникальными для этого сорта яблок.

Если не использовать иерархическое представление признаков, для каждого объекта пришлось бы в явной форме определить все присущие ему характеристики. Но благодаря наследованию объекту нужно доопределить только те качества, которые делают его уникальным внутри его класса, поскольку он (объект) наследует общие атрибуты своего родителя. Следовательно, именно механизм наследования позволяет одному объекту представлять конкретный экземпляр более общего класса.


Связь C++ с языками Java и C#


Вероятно, многие читатели знают о существовании таких языков программирования, как Java и С#. Язык Java разработан в компании Sun Microsystems, a C# — в компании Microsoft. Поскольку иногда возникает путаница относительно того, какое отношение эти два языка имеют к C++, попробуем внести ясность в этот вопрос.

C++ является родительским языком для Java и С#. И хотя разработчики Java и C# добавили к первоисточнику, удалили из него или модифицировали различные средства, в целом синтаксис этих трех языков практически идентичен. Более того, объектная модель, используемая C++, подобна объектным моделям языков Java и С#. Наконец, очень сходно общее впечатление и ощущение от использования всех этих языков. Это значит, что, зная C++, вы можете легко изучить Java или С#. Схожесть синтаксисов и объектных моделей — одна из причин быстрого освоения (и одобрения) этих двух языков многими опытными С++-программистами. Обратная ситуация также имеет место: если вы знаете Java или С#, изучение C++ не доставит вам хлопот.


Основное различие между C++, Java и C# заключается в типе вычислительной среды, для которой разрабатывался каждый из этих языков. C++ создавался с целью написания высокоэффективных программ, предназначенных для выполнения под управлением определенной операционной системы и в расчете на ЦП конкретного типа. Например, если вы хотите написать высокоэффективную программу для выполнения на процессоре Intel Pentium под управлением операционной системы Windows, лучше всего использовать для этого язык C++.

Языки Java и C# разработаны в ответ на уникальные потребности сильно распределенной сетевой среды, которая может служить типичным примером современных вычислительных сред. Java позволяет создавать межплатформенный (совместимый с несколькими операционными средами) переносимый программный код для Internet. Используя Java, можно написать программу, которая будет выполняться в различных вычислительных средах, т.е. в широком диапазоне операционных систем и типов ЦП. Таким образом, Java-пpoгpaммa может свободно "бороздить просторами" Internet. C# разработан для среды .NET Framework (Microsoft), которая поддерживает многоязычное программирование (mixed-language programming) и компонентно-ориентированный код, выполняемый в сетевой среде.

Несмотря на то что Java и C# позволяют создавать переносимый программный код, который работает в сильно распределенной среде, цена этой переносимости — эффективность. Java-пpoгpaммы выполняются медленнее, чем С++-программы. То же справедливо и для С#. Поэтому, если вы хотите создавать высокоэффективные приложения, используйте C++. Если же вам нужны переносимые программы, используйте Java или С#.

И последнее. Языки C++, Java и C# предназначены для решения различных классов задач. Поэтому вопрос "Какой язык лучше?" поставлен некорректно. Уместнее задать вопрос по-другому: "Какой язык наиболее подходит для решения данной задачи?".



Выбор среды разработки(IDE)


Основные понятия


Компилятор — программа, транслирующая исходный (высокоуровневый) код программы в конечный (низкоуровневый) код.


Компиляция — процесс преобразования высокоуровневого исходного текста программы, в эквивалентный текст программы, но уже на низкоуровневом языке.


Компоновщик (Линкер) — программа, которая генерирует исполнимый модуль путём связывания объектных файлов проекта.


IDE (Интегрированная среда разработки) — сочетание текстового редактора и компилятора. Разработка, компиляция и запуск своих программы осуществляется непосредственно в IDE. Интегрированные среды разработки упрощают процесс составления программ, так как написание кода компиляция и запуск программ выполняются в одной программе — IDE. Ещё одной важной особенностью IDE является то, что IDE помогает быстро найти и исправить ошибки компиляции.


Компиляция и компоновка программ в С/C++


Когда программисты разговаривают о программировании, они часто говорят: «программа откомпилировалась без ошибок», или, когда говорят программисту: «скомпилируй программу, посмотрим на результат работы». Такие разговорчики позднее могут стать источником путаницы для начинающих программистов. Компиляция и создание исполняемого файла — не синонимы! Создание исполняемых файлов — это многоступенчатый процесс, основные составляющие которого: компиляция и компоновка. На самом деле, даже если программа «откомпилировалась без ошибок», она может не работать из-за возможной ошибки во время стадии компоновки. Весь процесс трансляции файлов исходного кода в исполняемый файл лучше было бы называть построением проекта.



Компиляция!


Компиляция относится к обработке файлов исходного кода (.c, .cc, или .cpp) и создании объектных файлов проекта. На этом этапе не создается исполняемый файл. Вместо этого компилятор просто транслирует высокоуровневый код в машинный язык. Например, если вы создали (но не скомпоновали) три отдельных файла, у вас будет три объектных файла, созданные в качестве выходных данных на этапе компиляции. Расширение таких файлов будет зависеть от вашего компилятора, например *.obj или *.o. Каждый из этих файлов содержит машинные инструкции, которые эквивалентны исходному коду. Но вы не можете запустить эти файлы! Вы должны превратить их в исполняемые файлы операционной системы, только после этого их можно использовать. Вот тут за дело берётся компоновщик.


Компоновка!


Из нескольких объектных файлов создается единый исполняемый файл. На этом этапе полученный файл является единственным, а потому компоновщик будет жаловаться на найденные неопределенные функции. На этапе компиляции, если компилятор не мог найти определение для какой-то функции, считается, что функция была определена в другом файле. Если это не так, компилятор об этом знать не будет, так как не смотрит на содержание более чем одного файла за раз. Компоновщик, с другой стороны, может смотреть на несколько файлов и попытаться найти ссылки на функции, которые не были упомянуты.

Вы спросите, почему этапы компиляции и компоновки разделены. Во-первых, таким образом легче реализовать процесс построения программ. Компилятор делает свое дело, а компоновщик делает свое дело — посредством разделения функций, сложность программы снижается. Другим (более очевидным) преимуществом является то, что это позволяет создавать большие программы без необходимости повторения шага компиляции каждый раз, когда некоторые файлы будут изменены. Вместо этого, используется так называемая «условная компиляция». То есть объекты составляются только для тех исходных файлов, которые были изменены, для остальных, объектные файлы не пересоздаются. Тот факт, что каждый файл компилируется отдельно от информации, содержащейся в других файлах, существует благодаря разделению процесса построения проекта на этапы компиляции и компоновки.

Интегрированная среда разработки (IDE) эти два этапа берёт на себя и вам не стоит беспокоиться о том, какие из файлов были изменены. IDE сама решает,когда создавать объекты файлов, а когда нет.

Зная разницу между фазами компиляции и компоновки вам будет намного проще находить ошибки в своих проектах. Компилятор отлавливает, как правило, синтаксические ошибки — отсутствие точки с запятой или скобок. Если вы получаете сообщение об ошибке, множественного определения функции или переменной, знайте, вам об этом сообщает компоновщик. Эта ошибка может означать только одно, что в нескольких файлах проекта определены одна и та же функция или переменная.



Исправление ошибок компиляции — процесс компиляции


Это ваша первая программа на C (или C++) — она не такая уж большая, и вы собираетесь скомпилировать ее. Вы нажимаете на compile (или вводите команду компиляции) и ждете. Ваш компилятор выдает пятьдесят строк текста.

Типы ошибок компиляции

Во-первых, давайте различать типы ошибок. Большинство компиляторов покажет три типа предупреждений во время компиляции:

  • предупреждения компилятора;

  • ошибки компилятора;

  • ошибки компоновщика.


Хоть вы и не хотите игнорировать их, предупреждения компилятора не являются чем-то достаточно серьезным, чтобы не скомпилировать вашу программу. Как правило, предупреждения компилятора — это признак того, что что-то может пойти не так во время выполнения. Как компилятор узнает об этом? Вы, должно быть делали типичные ошибки, о которых компилятор знает. Типичный пример — использование оператора присваивания = вместо оператора равенства == внутри выражения. Ваш компилятор также может предупредить вас об использовании переменных, которые не были инициализированы и других подобных ошибках. Как правило, вы можете установить уровень предупреждений вашего компилятора — я устанавливаю его на самый высокий уровень, так что предупреждения компилятора не превращаются в ошибки в выполняемой программе (“ошибки выполнения”).

Тем не менее, предупреждения компилятора не должны останавливать работу вашей программы (если только вы не укажете компилятору рассматривать предупреждения как ошибки), так что они, вероятно, не так серьезны как ошибки.

Ошибки — это условия, которые препятствуют завершению компиляции ваших файлов.

Ошибки компилятора ограничены отдельными файлами исходного кода и являются результатом “синтаксических ошибок”. На самом деле, это означает, что вы сделали что-то, что компилятор не может понять. Например, выражение for(;) синтаксически не правильно, потому что цикл всегда должен иметь три части. Хотя компилятор ожидал точку с запятой, он мог также ожидать условное выражение, поэтому сообщение об ошибке, которое вы получите может быть что-то вроде:

line 13, unexpected parenthesis ‘)’

Заметьте, что ошибки компилятора всегда будут включать номер строки, в которой была обнаружена ошибка.

Даже если вы прошли процесс компиляции успешно, вы можете столкнуться с ошибками компоновщика. Ошибки компоновщика, в отличие от ошибок компилятора, не имеют ничего общего с неправильным синтаксисом. Вместо этого, ошибки компоновщика — это, как правило, проблемы с поиском определения функций, структур, классов или глобальных переменных, которые были объявлены, но не определены, в файле исходного кода. Как правило, эти ошибки будут иметь вид:

could not find definition for X

Как правило, процесс компиляции начинается с серии ошибок компиляции и предупреждений и, исправив их, вы столкнетесь с ошибками компоновщика. В свою очередь, я бы сначала исправлял ошибки компиляции, а затем ошибки компоновщика.


Ошибки компилятора — с чего начать?

Если вы столкнулись с перечнем пятидесяти или шестидесяти ошибок и предупреждений, то будет сложно определить с чего начать. Самое лучшее место, тем не менее, в начале списка. В самом деле, вы почти никогда не начинаете исправлять ошибки от конца файла до его начала по одной простой причине: вы не знаете ошибки ли они на самом деле!

Одна ошибка в верхней части вашей программы может вызвать целый ряд других ошибок компилятора, потому что эти строки могут рассчитывать на что-то в начале программы, что компилятор не смог понять. Например, если вы объявляете переменную с неправильным синтаксисом, компилятор сообщит о синтаксических ошибках, и что он не может найти объявление для переменной. Точка с запятой, поставленные не в том месте, могут привести к огромному количеству ошибок. Это происходит, потому что синтаксис C и C++ синтаксис позволяет объявить тип сразу же после его определения:

1

2

3

4

5

struct

{

   int x;

   int y;

} myStruct;

код создаст переменную, MyStruct, с местом для хранения структуры, содержащей два целых числа. К сожалению, это означает, что если вы опустите точку с запятой, компилятор будет интерпретировать это так, как будто следующая вещь в программе будет структурой (или возвращает структуру).

Что-то вроде этого:

1

2

3

4

5

6

7

8

struct MyStructType

{

   int x;

   int y;

}


int foo()

{}

может привести к огромному количеству ошибок, возможно, включая сообщения:

extraneous ‘int’ ignored

Все это из-за одного символа! Лучше всего начать с самого верха.

 Анализ сообщения об ошибке

Большинство сообщений от компилятора будет состоять как минимум из четырех вещей:

  1. тип сообщения — предупреждение или ошибка;

  2. исходный файл, в котором появилась ошибка;

  3. строка ошибки;

  4. краткое описание того, что работает неправильно.

Вывод g++ для указанной выше программы может выглядеть следующим образом (ваши результаты могут отличаться, если вы используете другой компилятор):

foo.cc:7: error: semicolon missing after struct declaration

foo.cc это имя файла. 7 — номер строки, и ясно, что это ошибка. Короткое сообщение здесь весьма полезно, поскольку оно показывает именно то, что не правильно. Заметим, однако, что сообщение имеет смысл только в контексте программы. Оно не сообщает, в какой структуре не хватает запятой.

Более непонятным является другое сообщение об ошибке из той же попытки компиляции:

extraneous ‘int’ ignored

Программист должен выяснить, почему это произошло. Обратите внимание еще раз, что эта ошибка была вызвана проблемой в начале программы, не в строке 8, а раньше, когда в структуре не хватает точки с запятой. К счастью, понятно, что определение функции для foo было в порядке, это говорит нам о том, что ошибка должна быть где-то в другом месте программы. На самом деле, она должна быть в программе раньше — вы не будете получать сообщение об ошибке, которое указывает на синтаксическую ошибку до строки, на которой ошибка на самом деле произошла.